CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Spin pumping through magnetic impurity effect |
Deng Wei-Yin (邓伟胤)a, Sheng Li (盛利)a b, Xing Ding-Yu (邢定钰)a b |
a National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China;
b Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China |
|
|
Abstract We propose a simple adiabatic quantum spin pump to generate pure spin current. The spin pump is driven by an ac gate voltage and a time-dependent magnetic impurity potential. It is found that the total pumped spin per cycle exhibits oscillations, whose magnitude decays exponentially with changing strength of the impurity potential. The proposed method may be useful for spintronic applications.
|
Received: 10 April 2015
Revised: 08 May 2015
Accepted manuscript online:
|
PACS:
|
72.25.Pn
|
(Current-driven spin pumping)
|
|
73.23.-b
|
(Electronic transport in mesoscopic systems)
|
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
Fund: Project supported by the State Key Program for Basic Research of China (Grant Nos. 2015CB921202, 2014CB921103, 2011CB922103, and 2010CB923400), the National Natural Science Foundation of China (Grant Nos. 11225420, 11174125, and 91021003), and the Priority Academic Program Development of Higher Education Institutions of Jiangsu Province, China. |
Corresponding Authors:
Sheng Li
E-mail: shengli@nju.edu.cn
|
Cite this article:
Deng Wei-Yin (邓伟胤), Sheng Li (盛利), Xing Ding-Yu (邢定钰) Spin pumping through magnetic impurity effect 2015 Chin. Phys. B 24 087202
|
[1] |
Klitzing K, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494
|
[2] |
Thouless D J, Kohmoto M, Nightingale M P and den Nijs M 1982 Phys. Rev. Lett. 49 405
|
[3] |
Thouless D J 1983 Phys. Rev. B 27 6083
|
[4] |
Niu Q and Thouless D J 1984 J. Phys. A: Math. Gen. 17 2453
|
[5] |
Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
|
[6] |
Bernevig B A and Zhang S C 2006 Phys. Rev. Lett. 96 106802
|
[7] |
Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
|
[8] |
Sheng D N, Weng Z Y, Sheng L and Haldane F D M 2006 Phys. Rev. Lett. 97 036808
|
[9] |
Sheng L, Li H C, Yang Y Y, Sheng D N and Xing D Y 2013 Chin. Phys. B 22 067201
|
[10] |
Fu L and Kane C L 2006 Phys. Rev. B 74 195312
|
[11] |
Zhou C Q, Zhang Y F, Sheng L, Shen R, Sheng D N and Xing D Y 2014 Phys. Rev. B 90 085133
|
[12] |
Chen M N, Sheng L, Shen R, Sheng D N and Xing D Y 2015 Phys. Rev. B 91 125117
|
[13] |
Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
|
[14] |
Zhu R 2010 Chin. Phys. B 19 127201
|
[15] |
Deng W Y, Zhong K J, Zhu R and Deng W J 2014 Front. Phys. 9 164
|
[16] |
Swithes M, Marcus C M, Campman K and Gossard A C 1999 Science 283 1905
|
[17] |
Wang B G and Wang J 2002 Phys. Rev. B 66 201305
|
[18] |
Zhu R and Chen H 2009 Appl. Phys. Lett. 95 122111
|
[19] |
Kraus Y E, Lahini Y, Ringel Z, Verbin M and Zilberberg O 2012 Phys. Rev. Lett. 109 106402
|
[20] |
Sharma P and Brouwer P W 2003 Phys. Rev. Lett. 91 166801
|
[21] |
Xiao Y C, Deng W Y, Deng W J, Zhu R and Wang R Q 2013 Phys. Lett. A 377 817
|
[22] |
Wang L, Troyer M and Dai X 2013 Phys. Rev. Lett. 111 026802
|
[23] |
Sharma P and Chamon C 2001 Phys. Rev. Lett. 87 096401
|
[24] |
Chaudhuri D and Dhar A 2011 Europhys. Lett. 94 30006
|
[25] |
Zhu R and Cui L J 2014 Phys. Lett. A 378 280
|
[26] |
Niu Q 1990 Phys. Rev. Lett. 64 1812
|
[27] |
Talyanskii V I, Shilton J M, Pepper M, Smith C G, Ford C J B, Linfield E H, Ritchie D A and Jones G A C 1997 Phys. Rev. B 56 15180
|
[28] |
Das S and Shpitalnik V 2008 Europhys. Lett. 83 17004
|
[29] |
Shikoh E, Ando K, Kubo K, Saitoh E, Shinjo T and Shiraishi M 2013 Phys. Rev. Lett. 110 127201
|
[30] |
Mucciolo E R, Chamon C and Marcus C M 2002 Phys. Rev. Lett. 89 146802
|
[31] |
Watson S K, Potok R M, Marcus C M and Umansky V 2003 Phys. Rev. Lett. 91 258301
|
[32] |
Lin C H, Tang C S and Chang Y C 2008 Phys. Rev. B 78 245312
|
[33] |
Zhang Q, Chan K S and Lin Z 2011 Appl. Phys. Lett. 98 032106
|
[34] |
Zhang Q, Lin Z, and Chan K S 2012 J. Phys.: Condens. Matter 24 075302
|
[35] |
Zhang C 2010 Phys. Rev. A 82 021607
|
[36] |
Buttiker M, Thomas H and Prêtre A 1994 Z. Phys. B 94 133
|
[37] |
Brouwer P W 1998 Phys. Rev. B 58 10135
|
[38] |
Tserkovnyak Y, Brataas A, Bauer G E W and Halperin B I 2005 Rev. Mod. Phys. 77 1375
|
[39] |
Prodan E 2009 Phys. Rev. B 80 125327
|
[40] |
Li H C, Sheng L, Sheng D N and Xing D Y 2010 Phys. Rev. B 82 165104
|
[41] |
Yang Y, Xu Z, Sheng L, Wang B G, Xing D Y and Sheng D N 2011 Phys. Rev. Lett. 107 066602
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|