Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 114201    DOI: 10.1088/1674-1056/ac7cd2
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Switchable vortex beam polarization state terahertz multi-layer metasurface

Min Zhong(仲敏) and Jiu-Sheng Li(李九生)
Center for THz Research, China Jiliang University, Hangzhou 310018, China
Abstract  We propose a switchable vortex beam polarization state terahertz multi-layer metasurface, which consists of three-layer elliptical metal crosses, four-layer dielectrics, and two-layer hollow metal circles, which are alternately superimposed. Under the normal incidence of left-handed circularly polarized (LCP) wave and the right-handed circularly polarized (RCP) waves, the proposed structure realizes three independent control functions, i.e., focused and vortex beam, vortex beam with different topological charges, and polarization states switching, and azimuth switching of two vortex beams with different polarization states. The results show that the proposed metasurface provides a new idea for investigating the multifunctional terahertz wave modulation devices.
Keywords:  terahertz wave      switchable vortex beam      polarization states      flexible manipulation  
Received:  05 June 2022      Revised:  27 June 2022      Accepted manuscript online:  29 June 2022
PACS:  42.25.Ja (Polarization)  
  74.25.Uv (Vortex phases (includes vortex lattices, vortex liquids, and vortex glasses))  
  07.05.Tp (Computer modeling and simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61871355, 61831012, and 62271460), the Talent Project of Zhejiang Provincial Department of Science and Technology, China (Grant No. 2018R52043), the Zhejiang Key Research and Development Project of China (Grant Nos. 2021C03153 and 2022C03166), and the Research Funds for the Provincial Universities of Zhejiang Province, China (Grant No. 2020YW20).
Corresponding Authors:  Jiu-Sheng Li     E-mail:  lijsh2008@126.com

Cite this article: 

Min Zhong(仲敏) and Jiu-Sheng Li(李九生) Switchable vortex beam polarization state terahertz multi-layer metasurface 2022 Chin. Phys. B 31 114201

[1] Wang D, Li N N, Li Z S, Chen C, Lee B and Wang Q H 2022 Opt. Express 30 3157
[2] Inoue K, Anand A and Cho M 2021 Opt. Lett. 46 1470
[3] Lu H, Zheng B, Cai T, Qian C, Yang Y H, Wang Z J and Chen H S 2021 Adv. Opt. Mater. 9 2001311
[4] Xu J W, Tian X M, Ding P, Xu K and Li Z Y 2021 Opt. Express 29 44227
[5] Li X, Tang J and Baine J 2020 Nanomaterials 10 1467
[6] Zhu W, Yang R S, Geng G Z, Fan Y C, Guo X Y, Li P, Fu Q H, Zhang F L, Gu C Z and Li J J 2020 Nanophotonics 9 4327
[7] Liu J Q, Li X, Tao J Q, Dong D X, Liu Y W and Fu Y Y 2021 Opt. Lett. 46 2537
[8] Zang X F, Yao B S, Li Z, Zhu Y, Xie J Y, Chen L, Balakin A V, Shkurinov A P, Zhu Y M and Zhuang S L 2020 Nanophotonics 9 1501
[9] Jin R C, Tang L L, Li J Q, Wang J, Wang Q J, Liu Y M and Dong Z G 2020 ACS Photon. 7 512
[10] Zhou L, Zhou T, Wang F, Li X, Chen R P, Zhou Y M and Zhou G Q 2021 Opt. Laser Technol. 143 107334
[11] Hao W M, Wang J and Chen L 2021 Opt. Lett. 46 4084
[12] Chen L, Liao D G, Guo X G, Zhao J Y, Zhu Y M and Zhuang S L 2019 Front Inform. Tech. El 20 591
[13] Zhou L, Zhao G Z and Li X N 2019 Acta Phys. Sin. 68 108701 (in Chinese)
[14] Zhang X D, Kong D P, Yuan Y, Mei S, Wang L L and Wang G X 2020 Opt. Commun. 465 125561
[15] Sharma V, Aadhi A and Samanta G K 2019 Opt. Express 27 18123
[16] Liu K Y, Wang G M, Li Z, Guo W L, Zhuang Y Q and Liu G 2019 Opt. Commun. 435 311
[17] Jiang Q, Bao Y J, Li J, Tian L F, Cui T, Sun L, Du B W, Li B W, Bai B F, Wang J, Sun H B, Shen B, Zhang H, Lin F, Zhu X and Fang Z Y 2020 Photon. Res. 8 986
[18] Zheng S, Hao H G, Tang Y H and Ran X H 2021 Opt. Lett. 46 5790
[19] Liu Y T, Xie R S, Chen X, Zhang H L and Ding J 2021 J. Phys. D: Appl. Phys. 54 475105
[20] Gao X and Tang L G 2021 Acta Phys. Sin. 70 038101 (in Chinese)
[21] Ran Y Z, Liang J G, Cai T and Li H P 2018 Opt. Commun. 427 101
[22] Gao X, Tang L G, Wu X B and Li S M 2021 J. Phys. D: Appl. Phys. 54 075104
[23] Wang Y, Wang H, Su R F, Li S H, Tu X C, Wu J B, Zhang C H, Jin B B, Wang H B, Chen J and Wu P H 2021 Opt. Express 29 33445
[24] Xiang Z Y, Shen Z and Shen Y C 2022 Sci. Rep. 12 1053
[25] Iqbal, S, Madni H A, Liu S, Zhang L and Cui T J 2019 Mater. Res. Express 6 125804
[26] Wu R Y, Zhang L, Bao L, Wu L W, Ma Q, Bai G D, Wu H T and Cui T J 2019 Adv. Opt. Mater. 7 1801429
[1] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[2] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[3] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
[4] High-sensitive terahertz detection by parametric up-conversion using nanosecond pulsed laser
Yuye Wang(王与烨), Gang Nie(聂港), Changhao Hu(胡常灏), Kai Chen(陈锴), Chao Yan(闫超), Bin Wu(吴斌), Junfeng Zhu(朱军峰), Degang Xu(徐德刚), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(2): 024204.
[5] High-efficiency terahertz wave generation with multiple frequencies by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Binzhe Jiao(焦彬哲), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Gege Zhang(张格格), Qianze Yan(颜钤泽), Pibin Bing(邴丕彬), Fengrui Zhang(张风蕊), Zhan Wang(王湛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(4): 044211.
[6] Theoretical research on terahertz wave generation from planar waveguide by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Jia Zhao(赵佳), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Yongjun Li(李永军), Binzhe Jiao(焦彬哲), Pibin Bing(邴丕彬), Hongtao Zhang(张红涛), Lian Tan(谭联), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(2): 024209.
[7] Active metasurfaces for manipulatable terahertz technology
Jing-Yuan Wu(吴静远), Xiao-Feng Xu(徐晓峰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2020, 29(9): 094202.
[8] Polarization conversion metasurface in terahertz region
Chen Zhou(周晨), Jiu-Sheng Li(李九生). Chin. Phys. B, 2020, 29(7): 078706.
[9] Single-shot measurement of THz pulses
Lei Yang(杨磊), Lei Hou(侯磊), Chengang Dong(董陈岗), Wei Shi(施卫). Chin. Phys. B, 2020, 29(5): 057803.
[10] Propagation characteristics of oblique incidence terahertz wave through non-uniform plasma
Antao Chen(陈安涛), Haoyu Sun(孙浩宇), Yiping Han(韩一平), Jiajie Wang(汪加洁), Zhiwei Cui(崔志伟). Chin. Phys. B, 2019, 28(1): 014201.
[11] Ultra-compact terahertz switch with graphene ring resonators
Jian-Zhong Sun(孙建忠), Le Zhang(章乐), Fei Gao(高飞). Chin. Phys. B, 2016, 25(10): 108701.
[12] Design and optimization of terahertz directional coupler based on hybrid-cladding hollow waveguide with low confinement loss
Yu Ying-Ying (于莹莹), Li Xu-You (李绪友), Sun Bo (孙波), He Kun-Peng (何昆鹏). Chin. Phys. B, 2015, 24(6): 068702.
[13] Realization of a broadband terahertz wavelength-selective coupling based on five-core fibers
Li Xu-You (李绪友), Yu Ying-Ying (于莹莹), Sun Bo (孙波), He Kun-Peng (何昆鹏). Chin. Phys. B, 2014, 23(8): 088701.
[14] Low-loss terahertz waveguide with InAs-graphene-SiC structure
Xu De-Gang (徐德刚), Wang Yu-Ye (王与烨), Yu Hong (于红), Li Jia-Qi (李佳起), Li Zhong-Xiao (李忠孝), Yan Chao (闫超), Zhang Hao (张昊), Liu Peng-Xiang (刘鹏翔), Zhong Kai (钟凯), Wang Wei-Peng (王卫鹏), Yao Jian-Quan (姚建铨). Chin. Phys. B, 2014, 23(5): 054210.
[15] High performance oscillator with 2-mW output power at 300 GHz
Wu De-Qi (武德起), Ding Wu-Chang (丁武昌), Yang Shan-Shan (杨姗姗), Jia Rui (贾锐), Jin Zhi (金智), Liu Xin-Yu (刘新宇). Chin. Phys. B, 2014, 23(5): 057204.
No Suggested Reading articles found!