Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 084204    DOI: 10.1088/1674-1056/28/8/084204
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Mask-based denoising scheme for ghost imaging

Yang Zhou(周阳)1, Shu-Xu Guo(郭树旭)1, Fei Zhong(钟菲)2, Tian Zhang(张天)3
1 State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China;
2 Changchun Institute of Technology, School of Electrical Engineering and Information Technology, Changchun 130012, China;
3 School of Physics, Northeast Normal University, Changchun 130024, China
Abstract  Ghost imaging (GI) is thought of as a promising imaging method in many areas. However, the main drawback of GI is the huge measurement data and low signal-to-noise ratio. In this paper, we propose a novel mask-based denoising scheme to improve the reconstruction quality of GI. We first design a mask through the maximum between-class variance (OTSU) method and construct the measurement matrix with speckle patterns. Then, the correlated noise in GI can be effectively suppressed by employing the mask. From the simulation and experimental results, we can conclude that our method has the ability to improve the imaging quality compared with traditional GI method.
Keywords:  ghost imaging      maximum between-class variance      mask      image quality  
Received:  22 February 2019      Revised:  09 April 2019      Accepted manuscript online: 
PACS:  42.30.Va (Image forming and processing)  
  42.30.Wb (Image reconstruction; tomography)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61627823), the Foundation for Excellent Young Talents of Jilin Province, China (Grant No. 20190103010JH), the “13th Five-Year” Science and Technology Research Project of the Education Department of Jilin Province, China (Grant No. JJKH20190277KJ), the China Postdoctoral Science Foundation (Grant No. 2018M641759), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2412018QD002).
Corresponding Authors:  Tian Zhang     E-mail:  zhangtian114@sina.cn

Cite this article: 

Yang Zhou(周阳), Shu-Xu Guo(郭树旭), Fei Zhong(钟菲), Tian Zhang(张天) Mask-based denoising scheme for ghost imaging 2019 Chin. Phys. B 28 084204

[1] Klyshko D N 1988 Sov. Phys. JETP 67 1131
[2] Pittman T B, Shih Y H, Strekalov D V and Sergienko A V 1995 Phys. Rev. A 52 R3429
[3] Bennink R S, Bentley S J and Boyd R W 2002 Phys. Rev. Lett. 89 113601
[4] Si Y, Kong L J, Li Y N, Tu C H and Wang H T 2016 Chin. Phys. Lett. 33 034203
[5] Cao D Z, Li Q C, Zhuang X C, Ren C, Zhang S H and Song X B 2018 Chin. Phys. B 27 123401
[6] Zhang D, Zhai Y H, Wu L A and Chen X H 2005 Opt. Lett. 18 2354
[7] Cheng J 2009 Opt. Express 17 7916
[8] Meyers R E, Deacon K S and Shih Y 2012 Appl. Phys. Lett. 100 131114
[9] Shi D, Fan C, Zhang P, Shen H, Zhang J, Qiao C and Wang Y 2013 Opt. Express 21 2050
[10] Cheng J and Lin J 2013 Phys. Rev. A 87 043810
[11] Gong W and Han S 2011 Opt. Lett. 36 394
[12] Tian N, Guo Q, Wang A, Xu D and Fu L 2011 Opt. Lett. 36 3302
[13] Chen W and Chen X 2014 Appl. Phys. Lett. 104 251109
[14] Zhao C, Gong W, Chen M, Li E, Wang H, Xu W and Han S 2012 Appl. Phys. Lett. 101 141123
[15] Li X, Deng C, Chen M, Gong W and Han S 2015 Photon. Res. 3 153
[16] Yang X, Zhang Y, Xu L, Yang C H, Wang Q, Liu Y H and Zhao Y 2015 Chin. Phys. B 24 124202
[17] Gong W, Zhao C, Yu H, Chen M, Xu W and Han S 2016 Sci. Rep. 6 26133
[18] Li Z, Suo J, Hu X and Dai Q 2016 Opt. Express 24 7328
[19] Ryczkowski P, Barbier M, Friberg A T, Dudley J M and Genty G 2016 Nat. Photon. 10 167
[20] Zhang Y and Zhao S 2017 Chin. Phys. B 26 054205
[21] Li H X, Bai Y F, Shi X H, Nan S Q, Qu L J, Shen Q and Fu X Q 2017 Chin. Phys. B 26 104204
[22] Wang C, Mei X, Pan L, Wang P, Li W, Gao X and Han S 2018 Remote Sens. 10 732
[23] Wang L, Zou L and Zhao S 2018 Opt. Commun. 407 181
[24] Sun B, Welsh S S, Edgar M P, Shapiro J H and Padgett M J 2012 Opt. Express 20 16892
[25] Ferri F, Magatti D, Lugiato L A and Gatti A 2010 Phys. Rev. Lett. 104 253603
[26] Yao X R, Yu W K, Liu X F, Li L Z, Li M F, Wu L A and Zhai G J 2014 Opt. Express 22 24268
[27] Li G, Yang Z, Zhao Y, Yan R, Liu X and Liu B 2017 Laser Phys. Lett. 14 025207
[28] Zhou Y, Zhang H, Zhong F, Guo S X 2018 Acta Phys. Sin. 67 244201 (in Chinese)
[29] Zhao S M and Zhuang P 2014 Chin. Phys. B 23 054203
[30] Wu H, Zhang X, Gan J, Luo C and Ge P 2016 Laser Phys. Lett. 13 115205
[31] Zafari M, Ahmadi-Kandjani S, Kheradm and R 2017 Opt. Commun. 387 182
[32] Shi X, Huang X, Nan S, Li H, Bai Y and Fu X 2018 Laser Phys. Lett. 15 045204
[33] Zhang C, Guo S, Cao J, Guan J and Gao F 2014 Opt. Express 22 30063
[34] Gong W 2015 Photon. Res. 3 234
[35] Yang C, Wang C, Guan J, Zhang C, Guo S, Gong W and Gao F 2016 Photon. Res. 4 281
[36] Otsu N 1979 IEEE Trans. Syst. Man Cybern 9 62
[37] Zerom P, Shi Z, O'Sullivan M N, Chan K W C, Krogstad M, Shapiro J H and Boyd R W 2012 Phys. Rev. A 86 063817
[38] Boomgaard R V D and Balen R V 1992 CVGIP: Graphical Models Image Process. 54 252
[39] Adams R 1993 CVGIP: Graphical Models Image Process. 55 325
[40] Wang Z and Bovik A C 2002 IEEE Signal Process. Lett. 9 81
[1] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[2] Ghost imaging based on the control of light source bandwidth
Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋), Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉). Chin. Phys. B, 2023, 32(3): 034210.
[3] Imaging a periodic moving/state-changed object with Hadamard-based computational ghost imaging
Hui Guo(郭辉), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084201.
[4] Orthogonal-triangular decomposition ghost imaging
Jin-Fen Liu(刘进芬), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084202.
[5] Efficient implementation of x-ray ghost imaging based on a modified compressive sensing algorithm
Haipeng Zhang(张海鹏), Ke Li(李可), Changzhe Zhao(赵昌哲), Jie Tang(汤杰), and Tiqiao Xiao(肖体乔). Chin. Phys. B, 2022, 31(6): 064202.
[6] An apodized cubic phase mask used in a wavefront coding system to extend the depth of field
Lina Zhu(朱丽娜), Fei Li(李飞), Zeyu Huang(黄泽宇), and Tingyu Zhao(赵廷玉). Chin. Phys. B, 2022, 31(5): 054217.
[7] Iterative filtered ghost imaging
Shao-Ying Meng(孟少英), Mei-Yi Chen(陈美伊), Jie Ji(季杰), Wei-Wei Shi(史伟伟), Qiang Fu(付强), Qian-Qian Bao(鲍倩倩), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2022, 31(2): 028702.
[8] Full color ghost imaging by using both time and code division multiplexing technologies
Le Wang(王乐), Hui Guo(郭辉), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2022, 31(11): 114202.
[9] High speed ghost imaging based on a heuristic algorithm and deep learning
Yi-Yi Huang(黄祎祎), Chen Ou-Yang(欧阳琛), Ke Fang(方可), Yu-Feng Dong(董玉峰), Jie Zhang(张杰), Li-Ming Chen(陈黎明), and Ling-An Wu(吴令安). Chin. Phys. B, 2021, 30(6): 064202.
[10] Handwritten digit recognition based on ghost imaging with deep learning
Xing He(何行), Sheng-Mei Zhao(赵生妹), and Le Wang(王乐). Chin. Phys. B, 2021, 30(5): 054201.
[11] Ghost imaging-based optical cryptosystem for multiple images using integral property of the Fourier transform
Yi Kang(康祎), Leihong Zhang(张雷洪), Hualong Ye(叶华龙), Dawei Zhang(张大伟), and Songlin Zhuang(庄松林). Chin. Phys. B, 2021, 30(12): 124207.
[12] Computational ghost imaging with deep compressed sensing
Hao Zhang(张浩), Yunjie Xia(夏云杰), and Deyang Duan(段德洋). Chin. Phys. B, 2021, 30(12): 124209.
[13] Compressed ghost imaging based on differential speckle patterns
Le Wang(王乐), Shengmei Zhao(赵生妹). Chin. Phys. B, 2020, 29(2): 024204.
[14] Super-resolution filtered ghost imaging with compressed sensing
Shao-Ying Meng(孟少英), Wei-Wei Shi(史伟伟), Jie Ji(季杰), Jun-Jie Tao(陶俊杰), Qian Fu(付强), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2020, 29(12): 128704.
[15] Experimental demonstration of influence of underwater turbulence on ghost imaging
Man-Qian Yin(殷曼倩), Le Wang(王乐), Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2019, 28(9): 094201.
No Suggested Reading articles found!