|
|
Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis |
Xiao-Qiang Su(苏晓强)1,2,†, Zong-Ju Xu(许宗菊)1,2, and You-Quan Zhao(赵有权)1,2 |
1 College of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China; 2 Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, Shanxi Normal University, Taiyuan 030031, China |
|
|
Abstract Exploring the role of entanglement in quantum nonequilibrium dynamics is important to understand the mechanism of thermalization in an isolated system. We study the relaxation dynamics in a one-dimensional extended Bose-Hubbard model after a global interaction quench by considering several observables: the local Boson numbers, the nonlocal entanglement entropy, and the momentum distribution functions. We calculate the thermalization fidelity for different quench parameters and different sizes of subsystems, and the results show that the degree of thermalization is affected by the distance from the integrable point and the size of the subsystem. We employ the Pearson coefficient as the measurement of the correlation between the entanglement entropy and thermalization fidelity, and a strong correlation is demonstrated for the quenched system.
|
Received: 14 April 2022
Revised: 21 May 2022
Accepted manuscript online: 08 June 2022
|
PACS:
|
05.70.Ln
|
(Nonequilibrium and irreversible thermodynamics)
|
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11147110), and the Natural Science Youth Foundation of Shanxi Province, China (Grant No. 2011021003). |
Corresponding Authors:
Xiao-Qiang Su
E-mail: suxq@mail.ustc.edu.cn
|
Cite this article:
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权) Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis 2023 Chin. Phys. B 32 020506
|
[1] Kinoshita T, Wenger T and Weiss D S 2006 Nature 440 900 [2] Tang Y, Kao W, Li K Y, Seo S, Mallayya K, Rigol M, Gopalakrishnan S and Lev B L 2018 Phys. Rev. X 8 021030 [3] Greiner M, Mandel O, Hänsch T W and Bloch I 2002 Nature 419 51 [4] Rigol M 2009 Phys. Rev. A 80 053607 [5] Khatami E, Pupillo G, Srednicki M and Rigol M 2013 Phys. Rev. Lett. 111 050403 [6] Sorg S, Vidmar L, Pollet L and Heidrich-Meisner F 2014 Phys. Rev. A 90 033606 [7] Gogolin C, Mueller M P and Eisert J 2011 Phys. Rev. Lett. 106 040401 [8] Titum P, Iosue J T, Garrison J R, Gorshkov A V and Gong Z X 2019 Phys. Rev. Lett. 123 115701 [9] Chen Z, Tang T, Austin J, Shaw Z, Zhao L and Liu Y 2019 Phys. Rev. Lett. 123 113002 [10] Titum P and Maghrebi M F 2020 Phys. Rev. Lett. 125 040602 [11] Gong Z and Ueda M 2018 Phys. Rev. Lett. 121 250601 [12] Guardado-Sanchez E, Brown P T, Mitra D, Devakul T, Huse D A, Schauss P and Bakr W S 2018 Phys. Rev. X 8 021069 [13] Ge Z Y, Huang R Z, Meng Z Y and Fan H 2022 Chin. Phys. B 31 020304 [14] Su X Q and Zhao Y Q 2020 Chin. Phys. B 29 120506 [15] Jaynes E T 1957 Phys. Rev. 106 620 [16] Jaynes E T 1959 Phys. Rev. 108 171 [17] Rigol M, Dunjko V, Yurovsky V and Olshanii M 2007 Phys. Rev. Lett. 98 050405 [18] Murakami Y, Takayoshi S, Kaneko T, Sun Z, Gole D, Millis A J and Werner P 2022 Commun. Phys. 5 23 [19] Srednicki M 1994 Phys. Rev. E 50 888 [20] Srednicki M 1999 J. Phys. A: Math. Gen. 32 1163 [21] Deutsch J M 1991 Phys. Rev. A 43 2046 [22] Santos L F and Rigol M 2010 Phys. Rev. E 81 036206 [23] Santos L F and Rigol M 2010 Phys. Rev. E 81 031130 [24] Rigol M, Dunjko V and Olshanii M 2008 Nature 452 854 [25] Khlebnikov S and Kruczenski M 2014 Phys. Rev. E 90 050101(R) [26] D'Alessio L, Kafri Y, Polkovnikov A and Rigol M 2016 Adv. Phys. 65 239 [27] Biroli G, Kollath C and Läuchli A M 2010 Phys. Rev. Lett. 105 250401 [28] Steinigeweg R, Khodja A, Niemeyer H, Gogolin C and Gemmer J 2014 Phys. Rev. Lett. 112 130403 [29] Brenes M, LeBlond T, Goold J and Rigol M 2020 Phys. Rev. Lett. 125 070605 [30] Sugimoto S, Hamazaki R and Ueda M 2021 Phys. Rev. Lett. 126 120602 [31] Calabrese P and Cardy J 2005 J. Stat. Mech. 2005 P04010 [32] Alba V and Calabrese P 2017 Proc. Natl. Acad. Sci. USA 114 7947 [33] Hu M L, Hu X, Wang J C, Peng Y, Zhang Y R and Fan H 2018 Phys. Rep. 762-764 1 [34] Lewis-Swan R J, Safavi-Naini A, Bollinger J J and Rey A M 2019 Nat. Commun. 10 1581 [35] Poilblanc D 2011 Phys. Rev. B 84 045120 [36] Yang Z C, Hamma A, Giampaolo S M, Mucciolo E R and Chamon C 2017 Phys. Rev. B 96 020408(R) [37] Geraedts S D, Nandkishore R and Regnault N 2016 Phys. Rev. B 93 174202 [38] Kaufman A M, Tai M E, Lukin A, Rispoli M and Greiner M 2016 Science 353 794 [39] Sekino Y and Susskind L 2008 J. High Energy Phys. 2008(10) 065 [40] Swingle B, Bentsen G, Schleier-Smith M and Hayden P 2016 Phys. Rev. A 94 040302(R) [41] Niyaz P, Scalettar R T, Fong C Y and Batrouni G G 1991 Phys. Rev. B 44 7143 [42] Scarola V M and Das Sarma S 2005 Phys. Rev. Lett. 95 033003 [43] Ng K K, Chen Y C and Tzeng Y C 2010 J. Phys.: Condens. Matter 22 185601 [44] Wang Y C, Zhang W Z, Shao H and Guo W A 2013 Chin. Phys. B 22 096702 [45] Su X Q and Wang A M 2012 Chin. J. Phys. 50 500 [46] Diehl S, Baranov M, Dalay A J and Zoller P 2010 Phys. Rev. Lett. 104 165301 [47] Li J R, Lee J, Huang W, Burchesky S, Shteynas B, Top F Çaǧri, Jamison A O and Ketterle W 2017 Nature 543 91 [48] Kim E and Chan M H W 2004 Nature 427 225 [49] Sengupta P, Pryadko L P, Alet F, Troyer M and Schmid G 2005 Phys. Rev. Lett. 94 207202 [50] Pai R V and Pandit R 2005 Phys. Rev. B 71 104508 [51] Kühner T D and Monien H 1998 Phys. Rev. B 58 R14741(R) [52] Kühner T D, White S R and Monien H 2000 Phys. Rev. B 61 12474 [53] Bocchieri P and Loinger A 1957 Phys. Rev. 107 337 [54] Percival I C 1961 J. Math. Phys. 2 235 [55] Cassidy A C, Clark C W and Rigol M 2011 Phys. Rev. Lett. 106 140405 [56] Popescu S, Short A J and Winter A 2006 Nature Physics 2 754 [57] Reimann P 2008 Phys. Rev. Lett. 101 190403 [58] Riera A, Gogolin C and Eisert J 2012 Phys. Rev. Lett. 108 080402 [59] D'Espagnat B 1984 Phys. Rep. 110 201 [60] D'Espagnat B 1999 Conceptual Foudations of Quantum Mechanics (New York: Perseus Books) [61] Linden N, Popescu S, Short A J and Winter A 2009 Phys. Rev. E 79 061103 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|