INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
High adsorption and separation performance ofCO2 over N2 in azo-based (N=N) pillar[6]arene supramolecular organic frameworks |
Yong-Chao Jiang(姜永超)1, Gui-Xia Li(李桂霞)1, Gui-Feng Yu(于桂凤)1, Juan Wang(王娟)1, Shu-Lai Huang(黄树来)1, and Guo-Liang Xu(徐国亮)2,† |
1 College of Science and Information, Qingdao Agricultural University, Qingdao 266109, China; 2 School of Physics, Henan Normal University, Xinxiang 453007, China |
|
|
Abstract Azo-based pillar[6]arene supramolecular organic frameworks are reported for CO2 and N2 adsorption and separation by density functional theory and grand canonical Monte-Carlo simulation. Azo-based pillar[6]arene provides suitable environment for CO2 adsorption and selectivity. The adsorption and selectivity results show that introducing azo groups can effectively improve CO2 adsorption and selectivity over N2, and both CO2 adsorption and CO2 selectivity over N2 follow the sequence pillar[6]arene_N4 > pillar[6]arene_N2 > pillar[6]arene. Pillar[6]arene_N4 exhibits CO2 adsorption capacity of ~ 1.36 mmol/g, and superior selectivity of CO2 over N2 of ~ 116.75 with equal molar fraction at 1 bar (1 bar=105 Pa) and 298 K. Interaction analysis confirms that both the Coulomb and van der Waals interactions between CO2 with pillar[6]arene frameworks are greater than that of N2. The stronger affinity of CO2 with pillar[6]arene_N4 than other structures and the larger isosteric heat differences between CO2 and N2 rendered pillar[6]arene_N4 to present the high CO2 adsorption capacity and high CO2 selectivity over N2. Our results highlight the potential of azo-functionalization as an excellent means to improve pillar[6]arene for CO2 capture and separation.
|
Received: 27 February 2021
Revised: 13 May 2021
Accepted manuscript online: 27 May 2021
|
PACS:
|
81.05.Rm
|
(Porous materials; granular materials)
|
|
68.43.-h
|
(Chemisorption/physisorption: adsorbates on surfaces)
|
|
31.15.E
|
(Density-functional theory)
|
|
05.10.Ln
|
(Monte Carlo methods)
|
|
Fund: Project supported by Shandong Province Higher Education Science and Technology Program, China (Grant No. J17KA016), State Key Laboratory of Bio-Fibers and Eco-Textiles (Grant No. K2019-12), and the Cultivation Fund of Henan Normal University, China (Grant No. 2020PL15). |
Corresponding Authors:
Guo-Liang Xu
E-mail: xugliang@htu.edu.cn
|
Cite this article:
Yong-Chao Jiang(姜永超), Gui-Xia Li(李桂霞), Gui-Feng Yu(于桂凤), Juan Wang(王娟), Shu-Lai Huang(黄树来), and Guo-Liang Xu(徐国亮) High adsorption and separation performance ofCO2 over N2 in azo-based (N=N) pillar[6]arene supramolecular organic frameworks 2021 Chin. Phys. B 30 118105
|
[1] Oschatz M and Antonietti M 2018 Energy Environ. Sci. 11 57 [2] Kupgan G, Abbott L J, Hart K E and Colina C M 2018 Chem. Rev. 118 5488 [3] Lu X Q, Jin D L, Wei S X, Wang Z J, An C H and Guo W Y 2015 J. Mater. Chem. A 3 12118 [4] Patil R S, Banerjee D, Zhang C, Thallapally P K and Atwood J L 2016 Angew. Chem. Int. Ed. 128 4599 [5] Dewal M B, Lufaso M W, Hughes A D, Samuel S A, Pellechia P and Shimizu L S 2006 Chem. Mater. 18 4855 [6] Lim S, Kim H, Selvapalam N, Kim K J, Cho S J, Seo G and Kim K 2008 Angew. Chem. Int. Ed. 120 3400 [7] Li E, Jie K C, Zhou Y J, Zhao R and Huang F H 2018 J. Am. Chem. Soc. 140 15070 [8] Ogoshi T, Saito K, Sueto R, Kojima R, Hamada Y, Akine S, Moeljadi A M P, Hirao H, Kakuta T and Yamagishi T 2018 Angew. Chem. Int. Ed. 57 1592 [9] Ogoshi T, Sueto R, Yoshikoshi K and Yamagishi T 2014 Chem. Commu. 50 15209 [10] Tan L L, Zhu Y L, Long H, Jin Y H, Zhang W and Yang Y W 2017 Chem. Comm. 53 6409 [11] Tan L L, Zhu Y L, Jin Y H, Zhang W and Yang Y W 2018 Supramol. Chem. 30 648 [12] Jursic B S 1998 J Mol Struct: THEOCHEM 452 145 [13] Potoff J J and Siepmann J I 2001 AIChE J. 47 1676 [14] Mayo S L, Olafson B D and Goddard W A 1990 J. Phys. Chem. 94 8897 [15] Li X F, Zhu L, Xue Q Z, Chang X, Ling C C and Xing W 2017 ACS Appl. Mater. Interfaces 9 31161 [16] Wu Z H, Wei S X, Wang M H, Zhou S N, Wang J H, Wang Z J, Guo W Y and Lu X Q 2018 J. CO2 Util. 28 145 [17] Salavati M, Ghasemi H and Rabczuk T 2018 Comput. Mater. Sci. 149 460 [18] Dubbeldam D, Calero S, Ellis D E and Snurr R Q 2016 Mol. Simulat. 42 81 [19] Kumar K V, Preuss K, Lu L H, Guo Z X and Titiricit M M 2015 J. Phys. Chem. C 119 22310 [20] Sarkisov L and Harrison A 2011 Mol. Simulat. 37 1248 [21] Düren T, Millange F, Férey G, Walton K S and Snurr R Q 2007 J. Phys. Chem. C 111 15350 [22] Garshasbi V, Jahangiri M and Anbia M 2017 Appl. Surf. Sci. 393 225 [23] Zhang S Y, Jensen S, Tan K, Wojtas L, Roveto M, Cure J, Thonhauser T, Chabal Y J and Zaworotko M J 2018 J. Am. Chem. Soc. 140 12545 [24] Wu X W, Han X, Liu YH, Liu Y and Cui Y 2018 J. Am. Chem. Soc. 140 16124 [25] Gopalsamy K and Subramanian V 2018 New J. Chem. 42 4240 [26] Thommes M, Kaneko K, Neimark A V, Olivier J P, Rodriguez-Reinoso F, Rouquerol J and Sing K S W 2015 Pure Appl. Chem. 87 1051 [27] Chaix A, Mouchaham G, Shkurenko A, Hoang P, Moosa B, Bhatt P M, Adil K, Salama K N, Eddaoudi M and Khashab N M 2018 J. Am. Chem. Soc. 140 14571 [28] Tan L L, Li H W, Tao Y C, Zhang X A, Wang B and Yang Y W 2014 Adv. Mater. 26 7027 [29] Dai J J, Xie D Y, Liu Y, Zhang Z G, Yang Y W, Yang Q W, Ren Q L and Bao Z B 2020 Ind. Eng. Chem. Res. 59 7866 [30] Zhou S N, Guo C, Wu Z H and Wang M H 2017 Appl. Surf. Sci. 410 259 [31] Chen S J, Fu Y, Huang Y X and Tao Z C 2016 J. Porous. Mat. 23 713 [32] Balbuena P B and Gubbins K E 1993 Langmuir 9 1801 [33] Prasetya N, Donose B C and Ladewig B P 2018 J. Mater. Chem. A 6 16390 [34] Patel H A, Je S H, Park J, Chen D P, Jung Y S, Yavuz C T and Coskun A 2013 Nat. Commun. 4 1357 [35] Hu J B, Liu Y, Liu J, Gu C K and Wu D W 2018 Fuel 226 591 [36] Chokbunpiam T, Fritzsche S, Chmelik C, Caro J, Janke W and Hannongbua S 2016 J. Phys. Chem. C 120 23458 [37] Li J R, Kuppler R J and Zhou H C 2009 Chem. Soc. Rev. 38 1477 [38] Yang X, Rees R J, Conway W, Puxty G and Winkler D A 2017 Chem. Rev. 117 9524 [39] Arab P, Rabbani M, Sekizkardes A K and Islamoglu T 2014 Chem. Mater. 26 1385 [40] Patel H A, Je S H, Park J, Jung Y S, Coskun A and Yzvuz C T 2013 Chem. A Eur. J. 20 772 [41] Liu B, Yao S, Liu X Y, Li X, Krishna R, Li GH, Huo Q S and Liu Y L 2017 ACS Appl. Mater. Interfaces 9 32820 [42] Rahimi M, Singh J K and Müller-Plathe F 2016 Phys. Chem. Chem. Phys. 18 4112 [43] Watabe T and Yogo K 2013 Sep. Purif. Technol. 120 20 [44] Zhu F, Dong S and Cheng G 2011 Chin. Phys. B 20 077103 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|