Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 048102    DOI: 10.1088/1674-1056/ab7807
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A numerical study of dynamics in thin hopper flow and granular jet

Meng-Ke Wang(王梦柯)1,2, Guang-Hui Yang(杨光辉)1,2, Sheng Zhang(张晟)1,2, Han-Jie Cai(蔡汉杰)1,2, Ping Lin(林平)1,2, Liang-Wen Chen(陈良文)1,2, Lei Yang(杨磊)1,2
1 Institute of Modern Physics, Chinese Academy of Sciences(CAS), Lanzhou 730000, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  The dynamics of granular material discharging from a cuboid but thin hopper, including the hopper flow and granular jet, are investigated via discrete element method (DEM) simulations. The slot width is varied to study its influence on the flow. It is found the flow in the cuboid hopper has similarity with the flow in two-dimensional (2D) hopper. When the slot width is large, the flowrate is higher than the predicted value from Beverloo's law and the velocity distribution is not Gaussian-like. For granular jet, there is a transition with varying slot width. For large slot width, there is a dense core in the jet and the variations of velocities and density are relatively small. Finally, the availability of continuum model is assessed and the results show that the performance with large slot width is better than that with small slot width.
Keywords:  cuboid hopper      granular jet      velocity field      discrete element method      continuum model  
Received:  12 January 2020      Revised:  11 February 2020      Accepted manuscript online: 
PACS:  81.05.Rm (Porous materials; granular materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11705256 and 11905272), the National Postdoctoral Program for Innovative Talents, China (Grant No. BX201700258), Young Scholar of CAS “Light of West China” Program for Guanghui Yang (Grant No. 2018-98), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA21010202).
Corresponding Authors:  Ping Lin     E-mail:  pinglin@impcas.ac.cn

Cite this article: 

Meng-Ke Wang(王梦柯), Guang-Hui Yang(杨光辉), Sheng Zhang(张晟), Han-Jie Cai(蔡汉杰), Ping Lin(林平), Liang-Wen Chen(陈良文), Lei Yang(杨磊) A numerical study of dynamics in thin hopper flow and granular jet 2020 Chin. Phys. B 29 048102

[1] Jaeger H M and Nagel S R 1992 Science 255 1523
[2] de Gennes P G 1999 Rev. Mod. Phys. 71 S374
[3] Chuang Zhao C B L, Lin Bao 2018 Chin. Phys. B 27 104501
[4] Brodu N, Delannay R, Valance A and Richard P 2015 J. Fluid Mech. 769 218
[5] Wang W G, Zhou Z G, Zong J and Hou M Y 2017 Chin. Phys. B 26 044501
[6] Nedderman R M, Tuzun U, Savage S B and Houlsby G T 1982 Chem. Eng. Sci. 37 1597
[7] Zhang S, Lin P, Yang G, Wan J F, Tian Y and Yang L 2019 Chin. Phys. B 28 018101
[8] To K, Lai P Y and Pak H K 2001 Phys. Rev. Lett. 86 71
[9] Ma L D, Yang G H, Zhang S, Lin P, Tian Y and Yang L 2018 Acta Phys. Sin. 67 044501 (in Chinese)
[10] Beverloo W A, Leniger H A and Vandevelde J 1961 Chem. Eng. Sci. 15 260
[11] Brown R L 1961 Nature 191 458
[12] Cai H J, Yang G, Vassilopoulos N, Zhang S, Fu F, Yuan Y and Yang L 2017 Phys. Rev. Accel. Beams 20 023401
[13] Prado G, Amarouchene Y and Kellay H 2013 Europhys. Lett. 102 198001
[14] Sano T G and Hayakawa H 2012 Phys. Rev. E 86 1
[15] Amarouchene Y, Boudet J F and Kellay H 2008 Phys. Rev. Lett. 100 4286
[16] Royer J R, Evans D J, Oyarte L, Guo Q, Kapit E, Mobius M E, Waitukaitis S R and Jaeger H M 2009 Nature 459 1110
[17] Mobius M E 2006 Phys. Rev. E 74 051304
[18] Ulrich S and Zippelius A 2012 Phys. Rev. Lett. 109 166001
[19] Staron L, Lagree P Y and Popinet S 2012 Phys. Fluids 24 47
[20] Zhou Y, Lagree P Y, Popinet S, Ruyer P and Aussillous P 2017 J. Fluid Mech. 829 459
[21] Peng L, Xu J, Zhu Q S, Li H Z, Ge W, Chen F G and Ren X X 2016 Powder Technol. 304 218
[22] Uchiyama T and Naruse M 2006 Chem. Eng. Sci. 61 1913
[23] Cao W G, Liu H F, Li W F and Xu J L 2014 Fuel 115 17
[24] Prado G, Amarouchene Y and Kellay H 2011 Phys. Rev. Lett. 106 198001
[25] Caretta O, Loveridge P, O'Dell J, Davenne T, Fitton M, Atherton A, Densham C, Charitonidis N, Efthymiopoulos I, Fabich A, Guinchard M, Lacny L J and Lindstrom B 2018 Phys. Rev. Accel. Beams 21 101005
[26] Ma L, Zhang X, Zhang S, Lin P, Zhang Y, Liu W, Sun J, Zhu Y, Xiao R, Yang G, Tian Y and Yang L 2018 Nucl. Eng. Des. 330 289
[27] Schaeffer D G 1992 Proc. Roy Soc. Lond. Mat. 436 217
[28] Ostoja-Starzewski M 1993 Mech. Mater. 16 55
[29] Cundall P A and Strack O D L 1979 Géotechnique 29 47
[30] Tian Y, Zhang S, Lin P, Yang Q, Yang G and Yang L 2017 Comput. Chem. Eng. 104 231
[31] Zhang S, Lin P, Wang C L, Tian Y, Wan J F and Yang L 2014 Granul. Matter 16 857
[32] Lin P, Zhang S, Qi J, Xing Y M and Yang L 2015 Physica A: Statistical Mechanics and its Applications 417 29
[33] Tian Y, Lin P, Zhang S, Wang C L, Wan J F and Yang L 2015 Adv. Powder Technol. 26 1191
[34] Beverloo W A, Leniger H A and van de Velde J 1961 Chem. Eng. Sci. 15 260
[35] Mankoc C, Janda A, Arévalo R, Pastor J M, Zuriguel I, Garcimartín A and Maza D 2007 Granul. Matter 9 407
[36] Langmaid R N and April H E 1957 J. Inst. Fuel 166
[37] Davies C E and Desai M 2008 Powder Technol. 183 436
[38] Myers M and Sellers M 1978 University of Cambridge, Cambridge
[39] Anand A, Curtis J S, Wassgren C R, Hancock B C and Ketterhagen W R 2008 Chem. Eng. Sci. 63 5821
[40] Brown R L and Richards J C 1970 Principles of powder mechanics: essays on the packing and flow of powders and bulk solids (Pergamon Press) p. 495
[41] Hirshfeld D and Rapaport D C Eur. Phys. J. E 4 193
[42] Staron L, Lagrée P Y and Popinet S 2014 Eur. Phys. J. E 37 51
[43] Nedderman R M 1995 Chem. Eng. Sci. 50 959
[44] Artoni R, Santomaso A C, Go' M and Canu P 2012 Phys. Rev. Lett. 108 238002
[45] Artoni R and Richard P 2015 Phys. Rev. Lett. 115 158001
[46] Andreotti B, Yoël F and Olivier P 2011 Les milieux granulaires (EDP Sciences)
[47] Prado G, Amarouchene Y and Kellay H 2013 Europhys. Lett. 102 24006
[48] Sano T G and Hayakawa H 2012 Phys. Rev. E 86 041308
[49] Rycroft C H, Grest G S, Landry J W and Bazant M Z 2006 Phys. Rev. E 74 021306
[50] Nedderman R M and Tüzün U 1979 Powder Technol. 22 243
[51] Tüzün U and Nedderman R M 1979 Powder Technol. 24 257
[52] Balevicius R, Kacianauskas R, Mroz Z and Sielamowicz I 2011 Adv. Powder Technol. 22 226
[53] Jaehyuk C, Arshad K and Martin Z B 2005 J. Phys.: Condens. Matter 17 S2533
[54] Balevicius R, Sielamowicz I, Mroz Z and Kacianauskas R 2011 Powder Technol. 214 322
[55] Medina A, Córdova J A, Luna E and Treviño C 1998 Phys. Lett. A 250 111
[56] Mullins W W 1979 Powder Technol. 23 115
[57] Jens E and Emmanuel V 2008 Rep. Prog. Phys. 71 036601
[58] Möbius M E 2006 Phys. Rev. E 74 051304
[59] Ulrich S and Zippelius A 2012 Phys. Rev. Lett. 109 166001
[60] Ansart R, Ryck A d and Dodds J A 2009 Chem. Eng. J. 152 415
[61] Ansart R, de Ryck A, Dodds J A, Roudet M, Fabre D and Charru F 2009 Powder Technol. 190 274
[62] Janda A, Zuriguel I and Maza D 2012 Phys. Rev. Lett. 108 248001
[63] Fluent I 2012 Fluent Inc.: Canonsburg, PA, USA
[1] Correlation mechanism between force chains and friction mechanism during powder compaction
Ning Zhang(张宁), Shuai Zhang(张帅), Jian-Jun Tan(谈健君), and Wei Zhang(张炜). Chin. Phys. B, 2022, 31(2): 024501.
[2] Criteria for Beverloo's scaling law
Sheng Zhang(张晟), Ping Lin(林平), Guanghui Yang(杨光辉), Jiang-Feng Wan(万江锋), Yuan Tian(田园), Lei Yang(杨磊). Chin. Phys. B, 2019, 28(1): 018101.
[3] Influence of particle packing structure on sound velocity
Chuang Zhao(赵闯), Cheng-Bo Li(李成波), Lin Bao(鲍琳). Chin. Phys. B, 2018, 27(10): 104501.
[4] A numerical study of contact force in competitive evacuation
Peng Lin(林鹏), Jian Ma(马剑), You-Ling Si(司有亮), Fan-Yu Wu(吴凡雨), Guo-Yuan Wang(王国元), Jian-Yu Wang(王建宇). Chin. Phys. B, 2017, 26(10): 104501.
[5] Discrete element crowd model for pedestrian evacuation through an exit
Peng Lin(林鹏), Jian Ma(马剑), Siuming Lo(卢兆明). Chin. Phys. B, 2016, 25(3): 034501.
[6] Experimental studies on flow visualization and velocity field of compression ramp with different incoming boundary layers
Wu Yu (武宇), Yi Shi-He (易仕和), He Lin (何霖), Chen Zhi (陈植), Zhu Yang-Zhu (朱杨柱). Chin. Phys. B, 2014, 23(11): 114702.
[7] Modelling the unsteady melt flow under a pulsed magnetic field
Chen Guo-Jun (陈国军), Zhang Yong-Jie (张永杰), Yang Yuan-Sheng (杨院生). Chin. Phys. B, 2013, 22(12): 124703.
[8] Simulation of random mixed packing of different density particles
Li Yuan-Yuan(李元元), Xia Wei(夏伟),Zhou Zhao-Yao(周照耀), He Ke-Jing(何克晶), Zhong Wen-Zhen(钟文镇), and Wu Yuan-Biao(吴苑标). Chin. Phys. B, 2010, 19(2): 024601.
[9] The density wave in a new anisotropic continuum model
Ge Hong-Xia(葛红霞), Dai Shi-Qiang(戴世强), and Dong Li-Yun(董力耘). Chin. Phys. B, 2008, 17(1): 23-26.
No Suggested Reading articles found!