|
|
Laser-modified luminescence for optical data storage |
Xin Wei(魏鑫)†, Weiwei Zhao(赵伟玮)†, Ting Zheng(郑婷), Junpeng Lü(吕俊鹏), Xueyong Yuan(袁学勇)‡, and Zhenhua Ni(倪振华)§ |
School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China |
|
|
Abstract The yearly growing quantities of dataflow create a desired requirement for advanced data storage methods. Luminescent materials, which possess adjustable parameters such as intensity, emission center, lifetime, polarization, etc., can be used to enable multi-dimensional optical data storage (ODS) with higher capacity, longer lifetime and lower energy consumption. Multiplexed storage based on luminescent materials can be easily manipulated by lasers, and has been considered as a feasible option to break through the limits of ODS density. Substantial progresses in laser-modified luminescence based ODS have been made during the past decade. In this review, we recapitulated recent advancements in laser-modified luminescence based ODS, focusing on the defect-related regulation, nucleation, dissociation, photoreduction, ablation, etc. We conclude by discussing the current challenges in laser-modified luminescence based ODS and proposing the perspectives for future development.
|
Received: 13 September 2022
Revised: 01 October 2022
Accepted manuscript online: 07 October 2022
|
PACS:
|
79.60.Dp
|
(Adsorbed layers and thin films)
|
|
68.65.-k
|
(Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61774034 and 12104090) |
Corresponding Authors:
Xueyong Yuan, Zhenhua Ni
E-mail: xueyongyuan@seu.edu.cn;zhni@seu.edu.cn
|
Cite this article:
Xin Wei(魏鑫), Weiwei Zhao(赵伟玮), Ting Zheng(郑婷), Junpeng Lü(吕俊鹏), Xueyong Yuan(袁学勇), and Zhenhua Ni(倪振华) Laser-modified luminescence for optical data storage 2022 Chin. Phys. B 31 117901
|
[1] Wei D, Ning H, Shi F, Wan Y, Xu J, Yang S and Zhu L 2021 Tsinghua Sci. Technol. 26 918 [2] Yu J, Luo M, Lv Z, Huang S, Hsu H H, Kuo C C, Han S T and Zhou Y 2020 Nanoscale 12 23391 [3] Rydning D, Reinsel J and Gantz J 2018 The digitization of the world from edge to core 2018 Framingham: International Data Corporation 16. [4] Gu M, Zhang Q and Lamon S 2016 Nat. Rev. Mater. 1 16070 [5] Gu M and Li X 2010 Opt. Photon. News 21 28 [6] Betzig E and Trautman Jay K 1992 Science 257 189 [7] Gan Z, Cao Y, Evans R A and Gu M 2013 Nat. Commun. 4 2061 [8] Srituravanich W, Pan L, Wang Y, Sun C, Bogy D B and Zhang X 2008 Nat. Nanotechno. 3 733 [9] McLeod E and Arnold C B 2008 Nat. Nanotech. 3 413 [10] Genet C and Ebbesen T W 2007 Nature 445 39 [11] Rakuljic G A, Leyva V and Yariv A 1992 Opt. Lett. 17 1471 [12] Gao L, Zhang Q, Evans R A and Gu M 2021 Adv. Opt. Mater. 9 2100487 [13] Krishnan R, Menon S G, Poelman D, Kroon R E and Swart H C 2021 Dalton Transactions 50 229 [14] Jadczak J, Kutrowska-Girzycka J, Kapu?ciński P, Huang Y S, Wójs A and Bryja L 2017 Nanotechnology 28 395702 [15] Zhang W, Li X, Jiang T, Song J, Lin Y, Zhu L and Xu X 2015 Nanoscale 7 13554 [16] Duan X, Wang C, Fan Z, Hao G, Kou L, Halim U, Li H, Wu X, Wang Y, Jiang J, Pan A, Huang Y, Yu R and Duan X 2016 Nano Lett. 16 264 [17] de Quilettes Dane W, Vorpahl Sarah M, Stranks Samuel D, Nagaoka H, Eperon Giles E, Ziffer Mark E, Snaith Henry J and Ginger David S 2015 Science 348 683 [18] Slavney A H, Hu T, Lindenberg A M and Karunadasa H I 2016 J. Am. Chem. Soc. 138 2138 [19] Chen C, Lu X, Deng B, Chen X, Guo Q, Li C, Ma C, Yuan S, Sung E, Watanabe K, Taniguchi T, Yang L and Xia F 2020 Sci. Adv. 6 eaay6134 [20] Liu S, Liu X, Wu Y, Zhang D, Wu Y, Tian H, Zheng Z and Zhu W H 2022 Matter 5 2319 [21] Subrahmanyam K S, Kumar P, Nag A and Rao C N R 2010 Solid State Communications 150 1774 [22] Zeng H, Cai W, Hu J, Duan G, Liu P and Li Y 2006 Appl. Phys. Lett. 88 171910 [23] Wang Y, Ren Y, Zhang S, Wu J, Song J, Li X, Xu J, Sow C H, Zeng H and Sun H 2018 Communications Physics 1 96 [24] Murthy K V R and Virk H 2013 Defect Diffus. Forum. 347 1 [25] Reedy R C 2003 Encyclopedia of Physical Science and Technology (Third Edition), Meyers R A Ed. (New York: Academic Press) pp. 575-601 [26] Lakowicz J 2006 Principles of Fluorescence Spectroscopy, Vol. 1 pp. 1-26 [27] Albani J R 2004 Structure and Dynamics of Macromolecules: Absorption and Fluorescence Studies, Albani J R Ed. (Amsterdam: Elsevier Science) pp. 373-386 [28] Runowski M, Marciniak J, Grzyb T, Przybylska D, Shyichuk A, Barszcz B, Katrusiak A and Lis S 2017 Nanoscale 9 16030 [29] Li S, Wei X, Li S, Zhu C and Wu C 2020 Int. J. Nanomedicine 15 9431 [30] Liu S, Liu X, Yuan J and Bao J 2021 Research 2021 7897849 [31] Yao W, Tian Q and Wu W 2018 Adv. Opt. Mater. 7 1801171 [32] Lin C C, Xiao Z R, Guo G Y, Chan T S and Liu R S 2010 J. Am. Chem. Soc. 132 3020 [33] Chen L, Lin C C, Yeh C W and Liu R S 2010 Materials 3 2172 [34] Park Y I, Kim J H, Lee K T, Jeon K S, Na H B, Yu J H, Kim H M, Lee N, Choi S H, Baik S I, Kim H, Park S P, Park B J, Kim Y W, Lee S H, Yoon S Y, Song I C, Moon W K, Suh Y D and Hyeon T 2009 Adv. Mater. 21 4467 [35] Li C and Lin J 2010 J. Mater. Chem. A 20 6831 [36] Zhao W, Cai S, Wei X, Zheng T, Xu X, Zafar A, Liu H, Yu T, Lu J, Chen Y and Ni Z 2021 Adv. Funct. Mater. 31 2103140 [37] Liu X, Zhang J, Zhang X, Hao Z, Qiao J and Dong X 2013 Opt. Lett. 38 148 [38] Wang T, Xu X, Zhou D, Yang Y, Qiu J and Yu X 2016 Inorg. Chem. 55 894 [39] Liu F, Yan W, Chuang Y J, Zhen Z, Xie J and Pan Z 2013 Sci. Rep. 3 1554 [40] Zou R, Huang J, Shi J, Huang L, Zhang X, Wong K L, Zhang H, Jin D, Wang J and Su Q 2017 Nano Res. 10 2070 [41] Lin H, Wang B, Huang Q, Huang F, Xu J, Chen H, Lin Z, Wang J, Hu T and Wang Y 2016 J. Mater. Chem. C 4 10329 [42] Lin H, Xu J, Huang Q, Wang B, Chen H, Lin Z and Wang Y 2015 ACS Appl. Mater. Interfaces. 7 21835 [43] Zhou Z, Wang X, Yi X, Ming H, Ma Z and Peng M 2021 Chem. Eng. J. 421 127820 [44] Wang B, Li X, Chen Y, Chen Y, Zhou J and Zeng Q 2018 J. Am. Ceram. Soc. 101 4598 [45] Qiu J, Miura K, Inouye H, Kondo Y, Mitsuyu T and Hirao K 1998 Appl. Phys. Lett. 73 1763 [46] Li R, Li H and Chang C 2022 J. Lumin. 243 118659 [47] Li R, Li H, Chang C and Sun Z 2022 Ceram. Int. 48 8914 [48] Zhuang Y, Wang L, Lv Y, Zhou T L and Xie R J 2018 Adv. Funct. Mater. 28 1705769 [49] Lin S, Lin H, Ma C, Cheng Y, Ye S, Lin F, Li R, Xu J and Wang Y 2020 Light Sci. Appl. 9 22 [50] Venkatakrishnan A, Chua H, Tan P, Hu Z, Liu H, Liu Y, Carvalho A, Lu J and Sow C H 2017 ACS Nano 11 713 [51] Zhao S, Tan J, Ke C, Feng S, Lai Y, Ding B, Luo G, Lin J and Liu B 2021 Sci. China Mater. 65 1034 [52] Su B W, Zhang X L, Xin W, Guo H W, Zhang Y Z, Liu Z B and Tian J G 2021 J. Mater. Chem. C 9 2599 [53] Sivaram S V, Hanbicki A T, Rosenberger M R, Jernigan G G, Chuang H J, McCreary K M and Jonker B T 2019 ACS Appl. Mater. Interfaces 11 16147 [54] Okolieocha C, Raps D, Subramaniam K and Altst?dt V 2015 Eur. Polym. J. 73 500 [55] Jia F, Zhao D and Wang M 2016 Progress in Crystal Growth and Characterization of Materials 62 252 [56] Reisfeld R 2001 Opt. Mater. 16 1 [57] Reisfeld R, Gaft M, Saridarov T, Panczer G and Zelner M 2000 Mater. Lett. 45 154 [58] Sahu A K, Mitra I, Kleiven H, Holte H R and Svensson K 2022 Clean Energy and Resource Recovery, An A, et al. eds. (Elsevier) pp. 405-422 [59] Zhang C and Lin J 2012 Chem. Soc. Rev. 41 7938 [60] Zhu D, Shu H, Jiang F, Lv D, Asokan V, Omar O, Yuan J, Zhang Z and Jin C 2017 NPJ 2D Mater. 1 1 [61] Liu C, Kwon Y K, Heo J, Kim B H and Sohn I B 2010 J. Am. Ceram. Soc. 93 1221 [62] Lin G, Pan H, Dai Y, He F, Chen D, Cheng Y, Jiang X, Zhang L, Qiu J and Zhao Q 2011 Mater. Lett. 65 3544 [63] Jin M, Zhou W, Ma W, Wang Q, Liang X, Zhang P and Xiang W 2022 Chem. Eng. J. 427 129812 [64] Stathopoulos S and Tsoukalas D 2021 Laser Annealing Processes in Semiconductor Technology, Cristiano F and La Magna A Eds. (Woodhead Publishing) pp. 49-78 [65] Lin Y W, Hsieh M M, Liu C P and Chang H T 2005 Langmuir 21 728 [66] Antolini F and Orazi L 2019 Frontiers in Chemistry 7 00252 [67] Arciniegas M P, Castelli A, Piazza S, Dogan S, Ceseracciu L, Krahne R, Duocastella M and Manna L 2017 Adv. Funct. Mater. 27 1701613 [68] Zhan W, Meng L, Shao C, Wu X G, Shi K and Zhong H 2021 ACS Photonics 8 765 [69] Vetchinnikov M P, Lipatiev A S, Shakhgildyan G Y, Golubev N V, Ignat'eva E S, Fedotov S S, Lipateva T O, Lotarev S V, Vilkovisky G A and Sigaev V N 2018 Opt. Lett. 43 2519 [70] Huang X, Guo Q, Yang D, Xiao X, Liu X, Xia Z, Fan F, Qiu J and Dong G 2020 Nat. Photonics 14 82 [71] Huang X, Guo Q, Kang S, Ouyang T, Chen Q, Liu X, Xia Z, Yang Z, Zhang Q, Qiu J and Dong G 2020 ACS Nano 14 3150 [72] Sun K, Tan D, Fang X, Xia X, Lin D, Song J, Lin Y, Liu Z, Gu M, Yue Y and Qiu J 2022 Science 375 307 [73] Gaeta A L and Boyd R W 2005 Encyclopedia of Modern Optics, Guenther R D Ed. (Oxford: Elsevier) pp. 258-262 [74] Sharma A, Slipchenko M N, Shneider M N, Wang X, Rahman K A and Shashurin A 2018 Sci. Rep. 8 2874 [75] Wu A Q, Chowdhury I H and Xu X 2005 Phys. Rev. B 72 085128 [76] Fedorov V Y and Tzortzakis S 2020 Light Sci. Appl. 9 186 [77] Rethfeld B 2004 Phys. Rev. Lett. 92 187401 [78] Jiang L, Wang A D, Li B, Cui T H and Lu Y F 2018 Light Sci. Appl. 7 17134 [79] Chen Q, Song H, Zhang F, Zhang H, Yu Y, Chen Z, Wei R, Dai Y and Qiu J 2017 Nanoscale 9 9083 [80] Peng M, Zhao Q, Qiu J and Wondraczek L 2009 J. Am. Chem. Soc. 92 542 [81] Watanabe Y, Namikawa G, Onuki T, Nishio K and Tsuchiya T 2001 Appl. Phys. Lett. 78 2125 [82] Bellec M, Royon A, Bousquet B, Bourhis K, Treguer M, Cardinal T, Richardson M and Canioni L 2009 Opt. Express 17 10304 [83] Royon A, Bourhis K, Bellec M, Papon G, Bousquet B, Deshayes Y, Cardinal T and Canioni L 2010 Adv. Mater. 22 5282 [84] Miura K, Qiu J, Fujiwara S, Sakaguchi S and Hirao K 2002 Appl. Phys. Lett. 80 2263 [85] Riesen N, Pan X, Badek K, Ruan Y, Monro T, Zhao J, Ebendorff-Heidepriem H and Riesen H 2018 Opt. Express 26 12266 [86] Wang Z, Tan D and Qiu J 2020 Opt. Lett. 45 6274 [87] Lu J, Lu J H, Liu H, Liu B, Chan K X, Lin J, Chen W, Loh K P and Sow C H 2014 ACS Nano 8 6334 [88] Tessarek C, Gridenco O, Wiesing M, Müssener J, Figge S, Sebald K, Gutowski J and Eickhoff M 2020 ACS Appl. Nano Mater. 3 7490 [89] Wang Y, Kang X, Cai F, Sun L, Yu Y, Gros C P, Bolze F and Xu H 2022 J. Lumin. 242 118579 [90] Yuan X, Zhao M, Guo X, Li Y, Yu Y, Gan Z and Ruan H 2020 Opt. Lett. 45 1535 [91] Chen W, Yan Z, Tian J, Liu S, Gao J and Zhang J 2021 Opt. Lett. 46 3211 [92] Zhou C, Cao G, Gan Z, Ou Q, Chen W, Bao Q, Jia B and Wen X 2019 ACS Appl. Mater. 11 26017 [93] Wei X, Zhao W, Yang J, Zhang Y, Song J, Ni Z, Lu J and Liu H 2022 J. Semicond. 43 062301 [94] Li Z, Yuan H, Yuan W, Su Q and Li F 2018 Coord. Chem. Rev. 354 155 [95] Yang Y and Cui D 2017 Gastric Cancer Prewarning and Early Diagnosis System, Cui D Ed. (Dordrecht: Springer Netherlands) pp. 239-270 [96] Sedlmeier A and Gorris H H 2015 Chem. Soc. Rev. 44 1526 [97] Heer S, Kömpe K, Güdel H U and Haase M 2004 Adv. Mater. 16 2102 [98] Song D, Zhao S and Xu Z 2019 Principles and Applications of Up-converting Phosphor Technology, Yang R Ed. (Singapore: Springer Singapore) pp. 1-32 [99] Zhang C, Zhou H P, Liao L Y, Feng W, Sun W, Li Z X, Xu C H, Fang C J, Sun L D, Zhang Y W and Yan C H 2010 Adv. Mater. 22 633 [100] Bai X, Yang Z, Zhan Y, Hu Z, Ren Y, Li M, Xu Z, Ullah A, Khan I, Qiu J, Song Z, Liu B and Wang Y 2020 ACS Appl. Mater. Interfaces 12 21936 [101] Wang S, Lin J, He Y, Chen J, Yang C, Huang F and Chen D 2020 Chem. Eng. J. 394 124889 [102] Teng Y, Zhou J, Sharafudeen K, Zhou S, Miura K and Qiu J 2014 J. Non. Cryst. Solids 383 91 [103] Huang Y, Xu S, Ji X and Yang X 2019 Laser Phys. Lett. 17 016001 [104] Xiao D, Huang X, Cun Y, Hu Z, Xu Z, Bai X, Zi Y, Fu L, Haider A A, Qiu J, Song Z, Dong G and Yang Z 2022 Sci. China Mater 65 1586 [105] Li X, Cao Y and Gu M 2011 Opt. Lett. 36 2510 [106] Zimmermann F, Plech A, Richter S, Tünnermann A and Nolte S 2016 Laser Photonics Rev. 10 327 [107] Rudenko A, Ma H, Veiko V P, Colombier J P and Itina T E 2017 Appl. Phys. A 124 63 [108] Hell S W and Wichmann J 1994 Opt. Lett. 19 780 [109] Sun B, Salter P S, Roider C, Jesacher A, Strauss J, Heberle J, Schmidt M and Booth M J 2018 Light Sci. Appl. 7 17117 [110] Tonndorf P, Schmidt R, Schneider R, Kern J, Buscema M, Steele G A, Castellanos-Gomez A, van der Zant H S J, Michaelis de Vasconcellos S and Bratschitsch R 2015 Optica 2 347 [111] Srivastava A, Sidler M, Allain A V, Lembke D S, Kis A and Imamo?lu A 2015 Nat. Nanotechnol. 10 491 [112] Koperski M, Nogajewski K, Arora A, Cherkez V, Mallet P, Veuillen J Y, Marcus J, Kossacki P and Potemski M 2015 Nat. Nanotechnol. 10 503 [113] He Y M, Clark G, Schaibley J R, He Y, Chen M C, Wei Y J, Ding X, Zhang Q, Yao W, Xu X, Lu C Y and Pan J W 2015 Nat. Nanotechnol. 10 497 [114] Chen X, Lu X, Dubey S, Yao Q, Liu S, Wang X, Xiong Q, Zhang L and Srivastava A 2019 Nat. Phys. 15 221 [115] Paul T 2007 Math. Struct. Comput. Sci. 17 1115 [116] Michaelis de Vasconcellos S, Wigger D, Wurstbauer U, Holleitner A W, Bratschitsch R and Kuhn T 2022 Phys. Status Solidi Basic Res. 259 2100566 [117] Gan L, Zhang D, Zhang R, Zhang Q, Sun H, Li Y and Ning C Z 2022 ACS Nano 16 14254 [118] Ciarrocchi A, Tagarelli F, Avsar A and Kis A 2022 Nat. Rev. Mater. 7 449 [119] Yu L, Liu D, Qi X Z, Xiong X, Feng L T, Li M, Guo G P, Guo G C and Ren X F 2018 Chin. Phys. B 27 047302 [120] Wu J M, Li L H, Zheng W H, Zheng B Y, Xu Z Y, Zhang X H, Zhu C G, Wu K, Zhang C, Jiang Y, Zhu X L and Zhuang X J 2022 Chin. Phys. B 31 057803 [121] Wu L, Ge C, Braun K, He M, Liu S, Tong Q, Wang X and Pan A 2021 Chin. Phys. B 30 087802 [122] Wang F 2017 Chin. Phys. B 26 034202 [123] Wen J, Wang H, Chen H, Deng S and Xu N 2018 Chin. Phys. B 27 096101 [124] Capasso F and Yu N 2014 Nat. Mater. 13 139 [125] Huang L, Zhang S and Zentgraf T 2018 Nanophotonics 7 1169 [126] Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y and Capasso F 2016 Science 352 1190 [127] Huang L, Chen X, Mühlenbernd H, Li G, Bai B, Tan Q, Jin G, Zentgraf T and Zhang S 2012 Nano Lett. 12 5750 [128] Xu M, Liang T, Shi M and Chen H 2013 Chem. Rev. 113 3766 [129] Liu C H, Zheng J, Colburn S, Fryett T K, Chen Y, Xu X and Majumdar A 2018 Nano Lett. 18 6961 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|