Special Issue:
TOPICAL REVIEW — Ultrafast intense laser science
|
TOPICAL REVIEW—Ultrafast intense laser science |
Prev
Next
|
|
|
Ultrafast solvation dynamics at internal sites of staphylococcal nuclease investigated by site-directed mutagenesis |
Gao Guang-Yu (高光宇)a, Li Yu (李渝)a, Wang Wei (王伟)a, Wang Shu-Feng (王树峰)a, Dongping Zhongb, Gong Qi-Huang (龚旗煌)a c |
a Institute of Modern Optics & State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China;
b Departments of Physics, Chemistry and Biochemistry, Programs of Biophysics, Chemical Physics and Biochemistry, The Ohio State University, Columbus, OH 43210, USA;
c Collaborative Innovation Center of Quantum Matter, Beijing 100190, China |
|
|
Abstract Internal solvation of protein was studied by site-directed mutagenesis, with which an intrinsically fluorescent probe, tryptophan, is inserted into the desired position inside a protein molecule for ultrafast spectroscopic study. Here we review this unique method for protein dynamics research. We first introduce the frontiers of protein solvation, site-directed mutagenesis, protein stability and characteristics, and the spectroscopic methods. Then we present time-resolved spectroscopic dynamics of solvation dynamics inside cavities of active sites. The studies are carried out on a globular protein, staphylococcal nuclease. The solvation at sites inside the protein molecule's cavities clearly reveals characteristics of the local environment. These solvation behaviors are directly correlated to enzyme activity.
|
Received: 22 October 2014
Revised: 01 December 2014
Accepted manuscript online:
|
PACS:
|
82.53.Ps
|
(Femtosecond probing of biological molecules)
|
|
87.14.E-
|
(Proteins)
|
|
87.15.kr
|
(Protein-solvent interactions)
|
|
87.64.K-
|
(Spectroscopy)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2013CB921904, 2009CB930504, and 2013CB328700) and the National Natural Science Foundation of China (Grant Nos. 11074016, 11121091, 10934001, 61177020,11134001, and 10828407). |
Corresponding Authors:
Wang Shu-Feng
E-mail: wangsf@pku.edu.cn
|
Cite this article:
Gao Guang-Yu (高光宇), Li Yu (李渝), Wang Wei (王伟), Wang Shu-Feng (王树峰), Dongping Zhong, Gong Qi-Huang (龚旗煌) Ultrafast solvation dynamics at internal sites of staphylococcal nuclease investigated by site-directed mutagenesis 2015 Chin. Phys. B 24 018201
|
[1] |
Zheng W M 2014 Chin. Phys. B 23 078705
|
[2] |
Murphy K P 2001 Methods in Molecular Biology (Vol. 168) (New Jersey: Humana) pp. 5-10
|
[3] |
Yu T, Guo X, Zou X W and Sang J P 2014 Chin. Phys. Lett. 31 068701
|
[4] |
Cotton F A, Hazen E E and Legg M J 1979 Proc. Natl. Acad. Sci. USA 76 2551
|
[5] |
Carter P and Wells J A 1987 Science 237 394
|
[6] |
Chang C W, Guo L, Kao Y T, Li J, Tan C, Li T, Saxena C, Liu Z, Wang L, Sancar A and Zhong D 2010 Proc. Natl. Acad. Sci. USA 107 2914
|
[7] |
Zhong D, Pal S K and Zewail A H 2011 Chem. Phys. Lett. 503 1
|
[8] |
Pal S K, Peon J, Bagchi B and Zewail A H 2002 J. Phys. Chem. B 106 12376
|
[9] |
Zhang L, Kao Y T, Qiu W, Wang L and Zhong D 2006 J. Phys. Chem. B 110 18097
|
[10] |
Lu W, Kim J, Qiu W and Zhong D 2004 Chem. Phys. Lett. 388 120
|
[11] |
Pal S K, Peon J and Zewail A H 2002 Proc. Natl. Acad. Sci. USA 99 15297
|
[12] |
Jimenez R, Fleming G R, Kumar P V and Maroncelli M 1994 Nature 369 471
|
[13] |
Fenimore P W, Frauenfelder H, McMahon B H and Young R D 2004 Proc. Natl. Acad. Sci. USA 101 14408
|
[14] |
Qiu W, Kao Y T, Zhang L, Yang Y, Wang L, Stites W E, Zhong D and Zewail A H 2006 Proc. Natl. Acad. Sci. USA 103 13979
|
[15] |
Zhang L, Wang L, Kao Y T, Qiu W, Yang Y, Okobiah O and Zhong D 2007 Proc. Natl. Acad. Sci. USA 104 18461
|
[16] |
Helms V 2007 ChemPhysChem 8 23
|
[17] |
Billeter M 1995 Prog. Nucl. Magn. Reson. Spectrosc. 27 635
|
[18] |
Burling F T, Weis W I, Flaherty K M and Brunger A T 1996 Science 271 72
|
[19] |
Dwyer J J, Gittis A G, Karp D A, Lattman E E, Spencer D S, Stites W E and García-Moreno E B 2000 Biophys. J. 79 1610
|
[20] |
Takano K, Funahashi J, Yamagata Y, Fujii S and Yutani K 1997 J. Mol. Biol. 274 132
|
[21] |
Damjanović A, García-Moreno B, Lattman E E and García A E 2005 Proteins: Struct. Funct. Bioinf. 60 433
|
[22] |
Goldbeck R A, Pillsbury M L, Jensen R A, Mendoza J L, Nguyen R L, Olson J S, Soman J, Kliger D S and Esquerra R M 2009 J. Am. Chem. Soc. 131 12265
|
[23] |
Grzesiek S, Bax A, Nicholson L K, Yamazaki T, Wingfield P, Stahl S J, Eyermann C J, Torchia D A and Hodge C N 1994 J. Am. Chem. Soc. 116 1581
|
[24] |
Qvist J, Ortega G, Tadeo X, Millet O and Halle B 2012 J. Phys. Chem. B 116 3436
|
[25] |
Denisov V P and Halle B 1995 J. Mol. Biol. 245 698
|
[26] |
Garcia A E and Hummer G 2000 Proteins 38 261
|
[27] |
Qin Y, Yang Y, Zhang L, Fowler J D, Qiu W, Wang L, Suo Z and Zhong D 2013 J. Phys. Chem. A 117 13926
|
[28] |
Onitsuka M, Kamikubo H, Yamazaki Y and Kataoka M 2008 Proteins: Struct. Funct. Bioinf. 72 837
|
[29] |
Zhang H, Huang S, Feng Y, Guo P and Jing G 2005 Arch. Biochem. Biophys. 441 123
|
[30] |
Hirano S, Mihara K i, Yamazaki Y, Kamikubo H, Imamoto Y and Kataoka M 2002 Proteins: Struct. Funct. Bioinf. 49 255
|
[31] |
Yin J and Jing G 2000 J. Biochem. 128 113
|
[32] |
Isom D G, Cannon B R, Castañeda C A, Robinson A and García-Moreno E B 2008 Proc. Natl. Acad. Sci. USA 105 17784
|
[33] |
Dadarlat V M and Post C B 2008 J. Phys. Chem. B 112 6159
|
[34] |
Chatfield D C, Szabo A and Brooks B R 1998 J. Am. Chem. Soc. 120 5301
|
[35] |
Maki K, Cheng H, Dolgikh D A, Shastry M C R and Roder H 2004 J. Mol. Biol. 338 383
|
[36] |
Feng Y, Huang S, Zhang W, Zeng Z, Zou X, Zhong L, Peng J and Jing G 2004 Biochimie 86 893
|
[37] |
Lakowicz J R 2006 Principles of Fluorescence Spectroscopy (3rd edn.) (New York: Springer) pp. 63-65
|
[38] |
Petrich J W, Longworth J W and Fleming G R 1987 Biochemistry 26 2711
|
[39] |
Beechem J M and Brand L 1985 Annu. Rev. Biochem 54 43
|
[40] |
Kelly S M, Jess T J and Price N C 2005 Biochim. Biophys. Acta 1751 119
|
[41] |
Karp D A, Gittis A G, Stahley M R, Fitch C A, Stites W E and Garcia-Moreno E B 2007 Biophys. J. 92 2041
|
[42] |
Li Y and Jing G 2000 J. Biochem. 128 739
|
[43] |
Eftink M R, Ionescu R, Ramsay G D, Wong C Y, Wu J Q and Maki A H 1996 Biochemistry 35 8084
|
[44] |
Levy Y and Onuchic J N 2006 Annu. Rev. Biophys. Biomol. Struct. 35 389
|
[45] |
Davey C A, Sargent D F, Luger K, Maeder A W and Richmond T J 2002 J. Mol. Biol. 319 1097
|
[46] |
Nucci N V, Pometun M S and Wand A J 2011 Nat. Struct. Mol. Biol. 18 245
|
[47] |
Oikawa M and Yonetani Y 2010 Biophys. J. 98 2974
|
[48] |
Damjanović A, Schlessman J L, Fitch C A, García A E and García-Moreno E B 2007 Biophys. J. 93 2791
|
[49] |
Hynes T R and Fox R O 1991 Proteins: Struct. Funct. Bioinf. 10 92
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|