Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 057101    DOI: 10.1088/1674-1056/25/5/057101

Topological phase boundary in a generalized Kitaev model

Da-Ping Liu(刘大平)
Department of Physics, Renmin University of China, Beijing 100872, China
Abstract  We study the effects of the next-nearest-neighbor hopping and nearest-neighbor interactions on topological phases in a one-dimensional generalized Kitaev model. In the noninteracting case, we define a topological number and calculate exactly the phase diagram of the system. With addition of the next-nearest-neighbor hopping, the change of phase boundary between the topological and trivial regions can be described by an effective shift of the chemical potential. In the interacting case, we obtain the entanglement spectrum, the degeneracies of which correspond to the topological edge modes, by using the infinite time-evolving block decimation method. The results show that the interactions change the phase boundary as adding an effective chemical potential which can be explained by the change of the average number of particles.
Keywords:  topological superconductor      Majorana zero modes      entanglement spectrum  
Received:  31 October 2015      Revised:  21 January 2016      Accepted manuscript online: 
PACS:  71.10.Pm (Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.))  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  74.20.-z (Theories and models of superconducting state)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB921704).
Corresponding Authors:  Da-Ping Liu     E-mail:

Cite this article: 

Da-Ping Liu(刘大平) Topological phase boundary in a generalized Kitaev model 2016 Chin. Phys. B 25 057101

[1] Wen X G 1989 Phys. Rev. B 40 7387
[2] Wen X G and Niu Q 1990 Phys. Rev. B 41 9377
[3] Wen X G 1990 Int. J. Mod. Phys. B 04 239
[4] Landau L D 1937 Phys. Z. Sowjetunion 11 26
[5] Ginzburg V L and Landau L D 1950 Zh. Ekaper. Teoret. Fiz. 20 1064
[6] Kitaev A Y 2001 Phys.-Usp. 44 131
[7] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[8] Alicea J 2012 Rep. Prog. Phys. 75 076501
[9] Leijnse M and Flensberg K 2012 Semicond. Sci. Technol. 27 124003
[10] Beenakker C W J 2013 Annu. Rev. Con. Mat. Phys. 4 113
[11] Cai X, Lang L J, Chen S and Wang Y 2013 Phys. Rev. Lett. 110 176403
[12] Wang P, Sun Q F and Xie X C 2014 Phys. Rev. B 90 155407
[13] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[14] Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105 077001
[15] Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett. 105 177002
[16] Stanescu T D, Lutchyn R M and Das Sarma S 2011 Phys. Rev. B 84 144522
[17] Liu Y, Ma Z, Zhao Y F, Meenakshi S and Wang J 2013 Chin. Phys. B 22 067302
[18] Shang E M, Pan Y M, Shao L B and Wang B G 2014 Chin. Phys. B 23 507201
[19] Zhang D P and Tian G S 2015 Chin. Phys. B 24 080401
[20] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 1003
[21] Rokhinson L P, Liu X and Furdyna J K 2012 Nat. Phys. 8 795
[22] Das A, Ronen Y, Most Y, Oreg Y, Heiblum M and Shtrikman H 2012 Nature Phys. 8 887
[23] Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P and Xu H Q 2012 Nano Lett. 12 6414
[24] Lee E J H, Jiang X, Aguado R, Katsaros G, Lieber C M and De Franceschi S 2012 Phys. Rev. Lett. 109 186802
[25] Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A and Yazdani A 2014 Science 346 602
[26] Wakatsuki R, Ezawa M, Tanaka Y and Nagaosa N 2014 Phys. Rev. B 90 014505
[27] Altland A and Zirnbauer M R 1997 Phys. Rev. B 55 1142
[28] Schnyder A P, Ryu S, Furusaki A and Ludwig A W W 2008 Phys. Rev. B 78 195125
[29] Kitaev A 2009 AIP Conf. Proc. 1134 22
[30] Ryu S, Schnyder A P, Furusaki A and Ludwig A W W 2010 New J. Phys. 12 065010
[31] Read N and Green D 2000 Phys. Rev. B 61 10267
[32] Li H and Haldane F D M 2008 Phys. Rev. Lett. 101 010504
[33] Pollmann F, Turner A M, Berg E and Oshikawa M 2010 Phys. Rev. B 81 064439
[34] Fidkowski L 2010 Phys. Rev. Lett. 104 130502
[35] Östlund S and Rommer S 1995 Phys. Rev. Lett. 75 3537
[36] Verstraete F, Wolf M M and Cirac J I 2007 Quantum Inf. Comput. 7 401
[37] Zheng D, Zhang G M, Xiang T and Lee D H 2011 Phys. Rev. B 83 014409
[38] Zhu J M 2008 Chin. Phys. Lett. 25 3574
[39] Vidal G 2007 Phys. Rev. Lett. 98 070201
[40] Orus R and Vidal G 2008 Phys. Rev. B 78, 155117
[41] Sato M, Tanaka Y, Yada K and Yokoyama T 2011 Phys. Rev. B 83 224511
[42] Tewari S and Sau J D 2012 Phys. Rev. Lett. 109 150408
[43] Vidal G 2003 Phys. Rev. Lett. 91 147902
[44] Shi Y Y, Duan L M and Vidal G 2006 Phys. Rev. A 74 022320
[45] Sticlet D, Seabra L, Pollmann F and Cayssol J 2014 Phys. Rev. B 89 115430
[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[3] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[4] Optical study on topological superconductor candidate Sr-doped Bi2Se3
Jialun Liu(刘佳伦), Chennan Wang(王晨南), Tong Lin(林桐), Liye Cao(曹立叶), Lei Wang(王蕾), Jiaji Li(李佳吉), Zhen Tao(陶镇), Nan Shen(申娜), Rina Wu(乌日娜), Aifang Fang(房爱芳), Nanlin Wang(王楠林), and Rongyan Chen(陈荣艳). Chin. Phys. B, 2022, 31(11): 117402.
[5] Cross correlation mediated by distant Majorana zero modes with no overlap
Lupei Qin(秦陆培), Wei Feng(冯伟), and Xin-Qi Li(李新奇). Chin. Phys. B, 2022, 31(1): 017402.
[6] Non-Hermitian Kitaev chain with complex periodic and quasiperiodic potentials
Xiang-Ping Jiang(蒋相平), Yi Qiao(乔艺), and Junpeng Cao(曹俊鹏). Chin. Phys. B, 2021, 30(7): 077101.
[7] Topological superconductivity in a Bi2Te3/NbSe2 heterostructure: A review
Hao Zheng(郑浩), Jin-Feng Jia(贾金锋). Chin. Phys. B, 2019, 28(6): 067403.
[8] Explicit forms of zero modes in symmetric interacting Kitaev chain without and with dimerization
Yiming Wang(王一鸣), Zhidan Li(李志聃), Qiang Han(韩强). Chin. Phys. B, 2018, 27(6): 067101.
[9] Topological phase diagrams and Majorana zero modes of the Kitaev ladder and tube
Yiming Wang(王一鸣), Zhidan Li(李志聃), Qiang Han(韩强). Chin. Phys. B, 2018, 27(4): 047401.
[10] Topological hierarchy matters–topological matters with superlattices of defects
Jing He(何敬), Su-Peng Kou(寇谡鹏). Chin. Phys. B, 2016, 25(11): 117310.
[11] Topological phase transition in a ladder of the dimerized Kitaev superconductor chains
Bo-Zhen Zhou(周博臻), Bin Zhou(周斌). Chin. Phys. B, 2016, 25(10): 107401.
No Suggested Reading articles found!