CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Topological phase boundary in a generalized Kitaev model |
Da-Ping Liu(刘大平) |
Department of Physics, Renmin University of China, Beijing 100872, China |
|
|
Abstract We study the effects of the next-nearest-neighbor hopping and nearest-neighbor interactions on topological phases in a one-dimensional generalized Kitaev model. In the noninteracting case, we define a topological number and calculate exactly the phase diagram of the system. With addition of the next-nearest-neighbor hopping, the change of phase boundary between the topological and trivial regions can be described by an effective shift of the chemical potential. In the interacting case, we obtain the entanglement spectrum, the degeneracies of which correspond to the topological edge modes, by using the infinite time-evolving block decimation method. The results show that the interactions change the phase boundary as adding an effective chemical potential which can be explained by the change of the average number of particles.
|
Received: 31 October 2015
Revised: 21 January 2016
Accepted manuscript online:
|
PACS:
|
71.10.Pm
|
(Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.))
|
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
74.20.-z
|
(Theories and models of superconducting state)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB921704). |
Corresponding Authors:
Da-Ping Liu
E-mail: liudp@ruc.edu.cn
|
Cite this article:
Da-Ping Liu(刘大平) Topological phase boundary in a generalized Kitaev model 2016 Chin. Phys. B 25 057101
|
[1] |
Wen X G 1989 Phys. Rev. B 40 7387
|
[2] |
Wen X G and Niu Q 1990 Phys. Rev. B 41 9377
|
[3] |
Wen X G 1990 Int. J. Mod. Phys. B 04 239
|
[4] |
Landau L D 1937 Phys. Z. Sowjetunion 11 26
|
[5] |
Ginzburg V L and Landau L D 1950 Zh. Ekaper. Teoret. Fiz. 20 1064
|
[6] |
Kitaev A Y 2001 Phys.-Usp. 44 131
|
[7] |
Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
|
[8] |
Alicea J 2012 Rep. Prog. Phys. 75 076501
|
[9] |
Leijnse M and Flensberg K 2012 Semicond. Sci. Technol. 27 124003
|
[10] |
Beenakker C W J 2013 Annu. Rev. Con. Mat. Phys. 4 113
|
[11] |
Cai X, Lang L J, Chen S and Wang Y 2013 Phys. Rev. Lett. 110 176403
|
[12] |
Wang P, Sun Q F and Xie X C 2014 Phys. Rev. B 90 155407
|
[13] |
Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
|
[14] |
Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105 077001
|
[15] |
Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett. 105 177002
|
[16] |
Stanescu T D, Lutchyn R M and Das Sarma S 2011 Phys. Rev. B 84 144522
|
[17] |
Liu Y, Ma Z, Zhao Y F, Meenakshi S and Wang J 2013 Chin. Phys. B 22 067302
|
[18] |
Shang E M, Pan Y M, Shao L B and Wang B G 2014 Chin. Phys. B 23 507201
|
[19] |
Zhang D P and Tian G S 2015 Chin. Phys. B 24 080401
|
[20] |
Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 1003
|
[21] |
Rokhinson L P, Liu X and Furdyna J K 2012 Nat. Phys. 8 795
|
[22] |
Das A, Ronen Y, Most Y, Oreg Y, Heiblum M and Shtrikman H 2012 Nature Phys. 8 887
|
[23] |
Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P and Xu H Q 2012 Nano Lett. 12 6414
|
[24] |
Lee E J H, Jiang X, Aguado R, Katsaros G, Lieber C M and De Franceschi S 2012 Phys. Rev. Lett. 109 186802
|
[25] |
Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A and Yazdani A 2014 Science 346 602
|
[26] |
Wakatsuki R, Ezawa M, Tanaka Y and Nagaosa N 2014 Phys. Rev. B 90 014505
|
[27] |
Altland A and Zirnbauer M R 1997 Phys. Rev. B 55 1142
|
[28] |
Schnyder A P, Ryu S, Furusaki A and Ludwig A W W 2008 Phys. Rev. B 78 195125
|
[29] |
Kitaev A 2009 AIP Conf. Proc. 1134 22
|
[30] |
Ryu S, Schnyder A P, Furusaki A and Ludwig A W W 2010 New J. Phys. 12 065010
|
[31] |
Read N and Green D 2000 Phys. Rev. B 61 10267
|
[32] |
Li H and Haldane F D M 2008 Phys. Rev. Lett. 101 010504
|
[33] |
Pollmann F, Turner A M, Berg E and Oshikawa M 2010 Phys. Rev. B 81 064439
|
[34] |
Fidkowski L 2010 Phys. Rev. Lett. 104 130502
|
[35] |
Östlund S and Rommer S 1995 Phys. Rev. Lett. 75 3537
|
[36] |
Verstraete F, Wolf M M and Cirac J I 2007 Quantum Inf. Comput. 7 401
|
[37] |
Zheng D, Zhang G M, Xiang T and Lee D H 2011 Phys. Rev. B 83 014409
|
[38] |
Zhu J M 2008 Chin. Phys. Lett. 25 3574
|
[39] |
Vidal G 2007 Phys. Rev. Lett. 98 070201
|
[40] |
Orus R and Vidal G 2008 Phys. Rev. B 78, 155117
|
[41] |
Sato M, Tanaka Y, Yada K and Yokoyama T 2011 Phys. Rev. B 83 224511
|
[42] |
Tewari S and Sau J D 2012 Phys. Rev. Lett. 109 150408
|
[43] |
Vidal G 2003 Phys. Rev. Lett. 91 147902
|
[44] |
Shi Y Y, Duan L M and Vidal G 2006 Phys. Rev. A 74 022320
|
[45] |
Sticlet D, Seabra L, Pollmann F and Cayssol J 2014 Phys. Rev. B 89 115430
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|