Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸)1, Qian-Ju Song(宋前举)2,†, Peng Hu(胡鹏)1, Da-Jian Cui(崔大健)3, Hong Xiang(向红)1,‡, and De-Zhuan Han(韩德专)1,§
1 Chongqing University, Chongqing 400044, China; 2 School of Science, Southwest University of Science and Technology, Mianyang 621010, China; 3 Chongqing Key Laboratory of Core Optoelectronic Devices for Quantum Communication, Chongqing Optoelectronics Research Institute, Chongqing 400060, China
Abstract The evolution of polarization singularities supported in a one-dimensional periodic plasmonic system is studied. The lateral inversion symmetry of the system, which breaks the in-plane inversion symmetry and up-down mirror symmetry simultaneously, yields abundant polarization states. A complete evolution process with geometry for the polarization states is traced. In the evolution, circularly polarized points (C points) can stem from 3 different processes. In addition to the previously reported processes occurring in an isolated band, a new type of C point appearing in two bands simultaneously due to the avoided band crossing, is observed. Unlike the dielectric system with a similar structure which only supports at- bound states in the continuum (BICs), accidental BICs off the point are realized in this plasmonic system. This work provides a new scheme of polarization manipulation for the plasmonic systems.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074049 and 12047564), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2020CDJQY-Z006 and 2020CDJQYZ003), and the Research Foundation of SWUST (Grant No. 21zx7141).
Corresponding Authors:
Qian-Ju Song, Hong Xiang, De-Zhuan Han
E-mail: qjsong@cqu.edu.cn;xhong@cqu.edu.cn;dzhan@cqu.edu.cn
Cite this article:
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专) Evolution of polarization singularities accompanied by avoided crossing in plasmonic system 2023 Chin. Phys. B 32 014201
[1] Ye W, Gao Y and Liu J 2020 Phys. Rev. Lett.124 153904 [2] Yoda T and Notomi M 2020 Phys. Rev. Lett.125 053902 [3] Zhen B, Hsu C W, Lu L, Stone A D and Soljacic M 2014 Phys. Rev. Lett.113 257401 [4] Hsu C W, Zhen B, Stone A D, Joannopoulos J D and Soljačić M 2016 Nat. Rev. Mater.1 16048 [5] Dai S, Liu L, Han D and Zi J 2018 Phys. Rev. B98 081405 [6] Yuan L and Lu Y Y 2018 Phys. Rev. A97 043828 [7] Chen W, Chen Y and Liu W 2019 Phys. Rev. Lett.122 153907 [8] Song Q J, Hu J S, Dai S W, Zheng C X, Han D Z, Zi J, Zhang Z Q and Chan C T 2020 Sci. Adv.6 eabc1160 [9] Sadreev A F 2021 Rep. Prog. Phys.84 055901 [10] Yuan L, Luo X and Lu Y Y 2021 Phys. Rev. A104 023521 [11] Kodigala A, Lepetit T, Gu Q, Bahari B, Fainman Y and Kante B 2017 Nature541 196 [12] Huang C, Zhang C, Xiao S M, Wang Y H, Fan Y B, Liu Y L, Zhang N, Qu G Y, Ji H J, Han J C, Ge L, Kivshar Y and Song Q H 2020 Science367 1018 [13] Yesilkoy F, Arvelo E R, Jahani Y, Liu M, Tittl A, Cevher V, Kivshar Y and Altug H 2019 Nat. Photon.13 390 [14] Melik-Gaykazyan E, Koshelev K, Choi J H, Kruk S S, Bogdanov A, Park H G and Kivshar Y 2021 Nano Lett.21 1765 [15] Koshelev K, Lepeshov S, Liu M, Bogdanov A and Kivshar Y 2018 Phys. Rev. Lett.121 193903 [16] Wang H F, Gupta S K, Zhu X Y, Lu M H, Liu X P and Chen Y F 2018 Phys. Rev. B98 214101 [17] Liu W, Wang B, Zhang Y, Wang J, Zhao M, Guan F, Liu X, Shi L and Zi J 2019 Phys. Rev. Lett.123 116104 [18] Mermet-Lyaudoz R, Dubois F, Hoang N V, Drouard E and Hai S N 2019 arXiv: 1905.03868 [physics.optics] [19] Lee S G, Kim S H and Kee C S 2020 Nanophotonics9 4373 [20] Ovcharenko A I, Blanchard C, Hugonin J P and Sauvan C 2020 Phys. Rev. B101 155303 [21] Yin X, Jin J, Soljacic M, Peng C and Zhen B 2020 Nature580 467 [22] Glowadzka W, Wasiak M and Czyszanowski T 2021 Nanophotonics10 3979 [23] Han S, Pitchappa P, Wang W, Srivastava Y K, Rybin M V and Singh R 2021 Adv. Opt. Mater.9 2002001 [24] Overvig A, Yu N and Alu A 2021 Phys. Rev. Lett.126 073001 [25] Zeng Y, Hu G, Liu K, Tang Z and Qiu C W 2021 Phys. Rev. Lett.127 176101 [26] Zhou H, Zhen B, Hsu C W, Miller O D, Johnson S G, Joannopoulos J D and Soljačić M 2016 Optica3 001079 [27] Meng Y, Zhang R Y, Zhang Q, Liu Z, Wu X, Xiao J, Xiang H, Han D and Wen W 2017 J. Phys. D: Appl. Phys.50 485101 [28] Doeleman H M, Monticone F, den Hollander W, Alú A and Koenderink A F 2018 Nat. Photon.12 397 [29] Cohen-Tannaoudji C, Diu B and Laloe F 1992 Quantum Mechanics (New York: Wiley-VCH) pp. 410-412 [30] Lin Y, Feng T, Lan S, Liu J and Xu Y 2020 Phys. Rev. Appl.13 064032 [31] Kang M, Zhang S, Xiao M and Xu H 2021 Phys. Rev. Lett.126 117402
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.