Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 100502    DOI: 10.1088/1674-1056/ac70c0
GENERAL Prev   Next  

Fusionable and fissionable waves of (2+1)-dimensional shallow water wave equation

Jing Wang(王静)1, Xue-Li Ding(丁学利)1, and Biao Li(李彪)2
1. Basic Teaching Department, Fuyang Institute of Technology, Fuyang 236000, China;
2. School of Mathematics and Statistics, Ningbo University, Ningbo 315211, China
Abstract  We investigate a (2+1)-dimensional shallow water wave equation and describe its nonlinear dynamical behaviors in physics. Based on the N-soliton solutions, the higher-order fissionable and fusionable waves, fissionable or fusionable waves mixed with soliton molecular and breather waves can be obtained by various constraints of special parameters. At the same time, by the long wave limit method, the interaction waves between fissionable or fusionable waves with higher-order lumps are acquired. Combined with the dynamic figures of the waves, the properties of the solution are deeply studied to reveal the physical significance of the waves.
Keywords:  fissionable wave      fusionable wave      breather wave      higher-order lump  
Received:  11 April 2022      Revised:  10 May 2022      Accepted manuscript online: 
PACS:  05.45.Yv (Solitons)  
  02.30.Jr (Partial differential equations)  
Fund: Project supported by the Excellent Talents Project of Colleges and Universities in Anhui Province of China (Grant No. gxyqZD2020077), the School-level Scientific Research Projects (Grant No. 2021KYXM08), the National Natural Science Foundation of China (Grant No. 11775121), and K. C. Wong Magna Fund in Ningbo University.
Corresponding Authors:  Biao Li     E-mail:  libiao@nbu.edu.cn

Cite this article: 

Jing Wang(王静), Xue-Li Ding(丁学利), and Biao Li(李彪) Fusionable and fissionable waves of (2+1)-dimensional shallow water wave equation 2022 Chin. Phys. B 31 100502

[1] Bailung H 2011 Phys. Rev. Lett. 107 255005
[2] Hirota R 2004 The Direct Method in Soliton Theory (Cambridge: Cambridge University Press)
[3] Peng W Q and Chen Y 2022 Physica D 435 133274
[4] Yang X Y, Zhang Z and Li B 2020 Chin. Phys. B 29 100501
[5] Wang Y, Chen M D, Li X and Li B 2017 Z. Naturforsch. A 72 419
[6] Wang J and Li B 2020 Complexity 2020 1
[7] Tian B and Gao Y T 1996 Comput. Phys. Commun. 95 139
[8] Zayed E M E 2010 J. Appl. Math. Informat. 28 383
[9] Tang Y N, Ma W X and Xu W 2012 Chin. Phys. B 21 070212
[10] Zeng Z F, Liu J G and Nie B 2016 Nonlinear Dynam. 86 667
[11] Liu J G and He Y 2017 Nonlinear Dynam. 90 363
[12] Liu X Z and Yu J 2022 Chin. Phys. B 31 050201
[13] Zhang Z, Yang X Y, Li W T and Li B 2019 Chin. Phys. B 28 110201
[14] Zhang Z, Qi Z Q and Li B 2020 Appl. Math. Lett. 116 107004
[15] Yong X, Yang Y and Chen D 2011 Comput. Math. Appl. 62 1765
[16] Wazwaz A M 2013 Rom. Rep. Phys. 65 383
[17] Wang S, Tang X Y and Lou S Y 2004 Chaos, Solitons and Fractals 21 231
[18] Chen A H 2010 Phys. Lett. A 374 2340
[19] Chen A H and Wang F F 2019 Phys. Scripta 94 055206
[20] Lou S Y 2020 J. Phys. Commun. 4 041002
[1] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[2] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[3] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[4] Matrix integrable fifth-order mKdV equations and their soliton solutions
Wen-Xiu Ma(马文秀). Chin. Phys. B, 2023, 32(2): 020201.
[5] Localized nonlinear waves in a myelinated nerve fiber with self-excitable membrane
Nkeh Oma Nfor, Patrick Guemkam Ghomsi, and Francois Marie Moukam Kakmeni. Chin. Phys. B, 2023, 32(2): 020504.
[6] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[7] Charge self-trapping in two strand biomolecules: Adiabatic polaron approach
D Chevizovich, S Zdravković, A V Chizhov, and Z Ivić. Chin. Phys. B, 2023, 32(1): 010506.
[8] Reciprocal transformations of the space-time shifted nonlocal short pulse equations
Jing Wang(王静), Hua Wu(吴华), and Da-Jun Zhang(张大军). Chin. Phys. B, 2022, 31(12): 120201.
[9] Riemann-Hilbert approach and N double-pole solutions for a nonlinear Schrödinger-type equation
Guofei Zhang(张国飞), Jingsong He(贺劲松), and Yi Cheng(程艺). Chin. Phys. B, 2022, 31(11): 110201.
[10] Oscillation properties of matter-wave bright solitons in harmonic potentials
Shu-Wen Guan(关淑文), Ling-Zheng Meng(孟令正), and Li-Chen Zhao(赵立臣). Chin. Phys. B, 2022, 31(8): 080506.
[11] Quantum fields presentation and generating functions of symplectic Schur functions and symplectic universal characters
Denghui Li(李登慧), Fei Wang(王菲), and Zhaowen Yan(颜昭雯). Chin. Phys. B, 2022, 31(8): 080202.
[12] Solutions of novel soliton molecules and their interactions of (2 + 1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation
Hong-Cai Ma(马红彩), Yi-Dan Gao(高一丹), and Ai-Ping Deng(邓爱平). Chin. Phys. B, 2022, 31(7): 070201.
[13] Nonlinear dynamical wave structures of Zoomeron equation for population models
Ahmet Bekir and Emad H M Zahran. Chin. Phys. B, 2022, 31(6): 060401.
[14] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
[15] Residual symmetries, consistent-Riccati-expansion integrability, and interaction solutions of a new (3+1)-dimensional generalized Kadomtsev—Petviashvili equation
Jian-Wen Wu(吴剑文), Yue-Jin Cai(蔡跃进), and Ji Lin(林机). Chin. Phys. B, 2022, 31(3): 030201.
No Suggested Reading articles found!