Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 028702    DOI: 10.1088/1674-1056/abb7fd

Quantitative coherence analysis of dual phase grating x-ray interferometry with source grating

Zhi-Li Wang(王志立)†, Rui-Cheng Zhou(周瑞成), Li-Ming Zhao(赵立明), Kun Ren(任坤), Wen Xu(徐文), Bo Liu(刘波), and Heng Chen(陈恒)
School of Electronic Science & Applied Physics, Hefei University of Technology, Hefei 230009, China
Abstract  Dual phase grating x-ray interferometry is compatible with common imaging detectors, and abandons the use of an absorption analyzer grating to reduce the radiation dose. When using x-ray tubes, an absorbing source grating must be introduced into the dual phase grating interferometer. In order to attain a high fringe visibility, in this work we conduct a quantitative coherence analysis of dual phase grating interferometry to find how the source grating affects the fringe visibility. Theoretical analysis shows that with the generalized Lau condition satisfied, the fringe visibility is influenced by the duty cycle of the source grating and the transmission through the grating bar. And the influence of the source grating profile on the fringe visibility is independent of the phase grating type. Numerical results illustrate that the maximum achievable fringe visibility decreases significantly with increasing transmission in the grating bar. Under a given transmission, one can always find an optimal duty cycle to maximize the fringe visibility. These results can be used as general guidelines for designing and optimizing dual phase grating x-ray interferometers for potential applications.
Keywords:  x-ray imaging      phase contrast      grating interferometer      fringe visibility  
Received:  25 July 2020      Revised:  01 September 2020      Accepted manuscript online:  14 September 2020
PACS:  87.59.-e (X-ray imaging) (Phase contrast and DIC)  
  07.60.Ly (Interferometers)  
  87.57.C- (Image quality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1532113, 11475170, and 11905041) and the Fundamental Research Funds for the Central Universities, China (Grant No. PA2020GDKC0024).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Zhi-Li Wang(王志立), Rui-Cheng Zhou(周瑞成), Li-Ming Zhao(赵立明), Kun Ren(任坤), Wen Xu(徐文), Bo Liu(刘波), and Heng Chen(陈恒) Quantitative coherence analysis of dual phase grating x-ray interferometry with source grating 2021 Chin. Phys. B 30 028702

1 Momose A, Kawamoto S, Koyama I, Hamaishi Y, Takai H and Suzuki Y 2003 Jpn. J. Appl. Phys. 42 L866
2 Weitkamp T, Diaz A, David C, Pfeiffer F, Stampanoni M, Cloetens P and Ziegler E 2005 Opt. Express 13 6296
3 Pfeiffer F, Weitkamp T, Bunk O and David C 2006 Nat. Phys. 2 258
4 Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry E F, Brönnimann CH, Gr\"unzweig C and David C 2008 Nat. Mater. 7 134
5 Donath T, Chabior M, Pfeiffer F, Bunk O, Reznikova E, Mohr J, Hempel E, Popescu S, Hoheisel M, Schuster M, Baumann J and David C 2009 J. Appl. Phys. 106 054703
6 Momose A, Yashiro W, Kuwabara H and Kawabata K 2009 Jpn. J. Appl. Phys. 48 076512
7 Yashiro W, Terui Y, Kawabata K and Momose A 2010 Opt. Express 18 16890
8 Bravin A, Coan P and Suortti P 2013 Phys. Med. Biol. 58 R1
9 Teshima T, Setomoto Y and Den T 2011 Opt. Lett. 36 3551
10 Momose A, Kuwabara H and Yashiro W 2011 Appl. Phys. Express 4 066603
11 Rigon L, Arfelli F and Menk R H 2007 Appl. Phys. Lett. 90 114012
12 Morimoto N, Fujino S, Ohshima K, Harada J, Hosoi T, Watanabe H and Shimura T 2014 Opt. Lett. 39 4297
13 Liu X, Guo J C, Lei Y H, Li J and Niu H B 2016 Chin. Phys. B 25 028704
14 Yang J, Guo J C, Lei Y H, Yi M H and Chen L 2017 Chin. Phys. B 26 028701
15 Wei C X, Wu Z, Fazi W, Wei W B, Bao Y, Luo R H, Wang L, Liu G and Tian Y C 2017 Chin. Phys. B 26 108701
16 Rong F, Gao Y, Guo C J, Xu W and Xu W 2019 Chin. Phys. B 28 108702
17 Wang Z L, Shi X M, Ren K, Chen H, Ren Y Q, Gao K and Wu Z 2020 J. Synchrotron Rad. 27 494
18 Faiz W, Li J, Gao K, Wu Z, Lei Y H, Huang J H and Zhu P P 2020 Chin. Phys. B 29 014301
19 Willner M, Herzen J, Grandl S, Auweter S D, Mayr D, Hipp A, Chabior M, Sarapata A, Achterhold K, Zanette I, Weitkamp T, Sztròkay A, Hellerhoff K, Reiser M and Pfeiffer F 2014 Phys. Med. Biol. 59 1557
20 Arboleda C, Wang Z, Jefimovs K, Koehler T, Stevendaal U V, Kuhn N, David B, Prevrhal S, Lå ng K, Forte S, Kubik-Huch R A, Leo C, Singer G, Marcon M, Boss A, Roessl E and Stampanoni1 M 2019 Eur. Radiol. 30 1419
21 Sarapata A, Ruiz-Yaniz M, Zanette I, Rack A, Pfeiffer F and Herzen J 2015 Appl. Phys. Lett. 106 154102
22 Ruiz-Yaniz M, Zanette I, Sarapata A, Birnbacher L, Marschner M, Chabior M, Olbinado M, Pfeiffer F and Rack A 2016 J. Synchrotron Rad. 23 1202
23 Ruiz-Yaniz M, Koch F, Zanette I, Rack A, Meyer P, Kunka D, Hipp A, Mohr J and Pfeiffer F 2015 Appl. Phys. Lett. 106 151105
24 Gradl R, Morgan K S, Dierolf M, Jud C, Hehn L, G\"unther B, Möller W, Kutschke D, Yang L, Stoeger T, Pfeiffer D, Gleich B, Achterhold K, Schmid O and Pfeiffer F 2019 IEEE T. Med. Imaging 38 649
25 Miao M, Panna A, Gomella A, Bennett E, Znati S, Chen L and Wen H 2016 Nat. Phys. 12 830
26 Kagias M, Wang Z, Jefimovs K and Stampanoni M 2017 Appl. Phys. Lett. 110 014105
27 Yan A, Wu X and Liu H 2018 Opt. Express 26 23142
28 Yan A, Wu X and Liu H 2019 Opt. Express 27 22727
29 Ge Y S, Chen J W, Zhu P P, Yang J, Deng S W, Shi W, Zhang K, Guo J C, Zhang H T, Zheng H R and Liang D 2020 Opt. Express 28 9786
30 Pandeshwar A, Kagias M, Wang Z and Stampanoni M 2020 Opt. Express 28 19187
31 Wang Z L, Zhu P P, Huang W X, Yuan Q X, Liu X S, Zhang K, Hong Y L, Zhang H T, Ge X, Gao K and Wu Z Y 2010 Anal. Bioanal. Chem. 397 2091
32 Goodman J1985 Statistical Optics(John Wiley and Sons, Inc.)
33 Revol V, Kottler C, Kaufmann R, Straumann U and Urban C 2010 Rev. Sci. Instrum. 81 073709
34 Weber T, Bartl P, Bayer F, Durst J, Haas W, Michel T, Ritter A and Anton G 2011 Med. Phys. 38 4133
[1] Investigations of moiré artifacts induced by flux fluctuations in x-ray dark-field imaging
Zhi-Li Wang(王志立), Zi-Han Chen(陈子涵), Yao Gu(顾瑶), Heng Chen(陈恒), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(3): 038704.
[2] Analysis of refraction and scattering image artefacts in x-ray analyzer-based imaging
Li-Ming Zhao(赵立明), Tian-Xiang Wang(王天祥), Run-Kang Ma(马润康), Yao Gu(顾瑶), Meng-Si Luo(罗梦丝), Heng Chen(陈恒), Zhi-Li Wang(王志立), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(2): 028701.
[3] X-ray phase-sensitive microscope imaging with a grating interferometer: Theory and simulation
Jiecheng Yang(杨杰成), Peiping Zhu(朱佩平), Dong Liang(梁栋), Hairong Zheng(郑海荣), and Yongshuai Ge(葛永帅). Chin. Phys. B, 2022, 31(9): 098702.
[4] Efficient implementation of x-ray ghost imaging based on a modified compressive sensing algorithm
Haipeng Zhang(张海鹏), Ke Li(李可), Changzhe Zhao(赵昌哲), Jie Tang(汤杰), and Tiqiao Xiao(肖体乔). Chin. Phys. B, 2022, 31(6): 064202.
[5] Analysis of period and visibility of dual phase grating interferometer
Jun Yang(杨君), Jian-Heng Huang(黄建衡), Yao-Hu Lei(雷耀虎), Jing-Biao Zheng(郑景标), Yu-Zheng Shan(单雨征), Da-Yu Guo(郭大育), and Jin-Chuan Guo(郭金川). Chin. Phys. B, 2022, 31(5): 058701.
[6] Fringe visibility and correlation in Mach-Zehnder interferometer with an asymmetric beam splitter
Yan-Jun Liu(刘彦军), Mei-Ya Wang(王美亚), Zhong-Cheng Xiang(相忠诚), and Hai-Bin Wu(吴海滨). Chin. Phys. B, 2022, 31(11): 110305.
[7] Real time high accuracy phase contrast imaging with parallel acquisition speckle tracking
Zhe Hu(胡哲), Wen-Qiang Hua(滑文强), and Jie Wang(王 劼). Chin. Phys. B, 2021, 30(6): 064201.
[8] Retrieval of multiple scattering contrast from x-ray analyzer-based imaging
Heng Chen(陈恒), Bo Liu(刘波), Li-Ming Zhao(赵立明), Kun Ren(任坤), and Zhi-Li Wang(王志立). Chin. Phys. B, 2021, 30(1): 018701.
[9] Biases of estimated signals in x-ray analyzer-based imaging
Jianlin Xia(夏健霖), Wen Xu(徐文), Ruicheng Zhou(周瑞成), Xiaomin Shi(石晓敏), Kun Ren(任坤), Heng Chen(陈恒), Zhili Wang(王志立). Chin. Phys. B, 2020, 29(6): 068703.
[10] Nanofabrication of 50 nm zone plates through e-beam lithography with local proximity effect correction for x-ray imaging
Jingyuan Zhu(朱静远), Sichao Zhang(张思超), Shanshan Xie(谢珊珊), Chen Xu(徐晨), Lijuan Zhang(张丽娟), Xulei Tao(陶旭磊), Yuqi Ren(任玉琦), Yudan Wang(王玉丹), Biao Deng(邓彪), Renzhong Tai(邰仁忠), Yifang Chen(陈宜方). Chin. Phys. B, 2020, 29(4): 047501.
[11] Fringe visibility and distinguishability in two-path interferometer with an asymmetric beam splitter
Yanjun Liu(刘彦军), Jing Lu(卢竞), Zhihui Peng(彭智慧), Lan Zhou(周兰), Dongning Zheng(郑东宁). Chin. Phys. B, 2019, 28(3): 030303.
[12] Theory and method of dual-energy x-ray grating phase-contrast imaging
Feng Rong(荣锋), Yan Gao(高艳), Cui-Juan Guo(郭翠娟), Wei Xu(徐微), Wei Xu(徐伟). Chin. Phys. B, 2019, 28(10): 108702.
[13] Shifting curves based on the detector integration effect for x-ray phase contrast imaging
Jun Yang(杨君), Jin-Chuan Guo(郭金川), Yao-Hu Lei(雷耀虎), Ming-Hao Yi(易明皓), Li Chen(陈力). Chin. Phys. B, 2017, 26(2): 028701.
[14] Single-shot grating-based x-ray differential phase contrast imaging with a modified analyzer grating
Chen-Xi Wei(卫晨希), Zhao Wu(吴朝), Faiz Wali, Wen-Bin Wei(魏文彬), Yuan Bao(鲍园), Rong-Hui Luo(骆荣辉), Lei Wang(王磊), Gang Liu(刘刚), Yang-Chao Tian(田扬超). Chin. Phys. B, 2017, 26(10): 108701.
[15] Wavefront sensing based on phase contrast theory and coherent optical processing
Lei Huang(黄磊), Qi Bian(边琪), Chenlu Zhou(周晨露), Tenghao Li(李腾浩), Mali Gong(巩马理). Chin. Phys. B, 2016, 25(7): 070701.
No Suggested Reading articles found!