INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Quantitative coherence analysis of dual phase grating x-ray interferometry with source grating |
Zhi-Li Wang(王志立)†, Rui-Cheng Zhou(周瑞成), Li-Ming Zhao(赵立明), Kun Ren(任坤), Wen Xu(徐文), Bo Liu(刘波), and Heng Chen(陈恒) |
School of Electronic Science & Applied Physics, Hefei University of Technology, Hefei 230009, China |
|
|
Abstract Dual phase grating x-ray interferometry is compatible with common imaging detectors, and abandons the use of an absorption analyzer grating to reduce the radiation dose. When using x-ray tubes, an absorbing source grating must be introduced into the dual phase grating interferometer. In order to attain a high fringe visibility, in this work we conduct a quantitative coherence analysis of dual phase grating interferometry to find how the source grating affects the fringe visibility. Theoretical analysis shows that with the generalized Lau condition satisfied, the fringe visibility is influenced by the duty cycle of the source grating and the transmission through the grating bar. And the influence of the source grating profile on the fringe visibility is independent of the phase grating type. Numerical results illustrate that the maximum achievable fringe visibility decreases significantly with increasing transmission in the grating bar. Under a given transmission, one can always find an optimal duty cycle to maximize the fringe visibility. These results can be used as general guidelines for designing and optimizing dual phase grating x-ray interferometers for potential applications.
|
Received: 25 July 2020
Revised: 01 September 2020
Accepted manuscript online: 14 September 2020
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1532113, 11475170, and 11905041) and the Fundamental Research Funds for the Central Universities, China (Grant No. PA2020GDKC0024). |
Corresponding Authors:
†Corresponding author. E-mail: dywangzl@hfut.edu.cn
|
Cite this article:
Zhi-Li Wang(王志立), Rui-Cheng Zhou(周瑞成), Li-Ming Zhao(赵立明), Kun Ren(任坤), Wen Xu(徐文), Bo Liu(刘波), and Heng Chen(陈恒) Quantitative coherence analysis of dual phase grating x-ray interferometry with source grating 2021 Chin. Phys. B 30 028702
|
1 Momose A, Kawamoto S, Koyama I, Hamaishi Y, Takai H and Suzuki Y 2003 Jpn. J. Appl. Phys. 42 L866 2 Weitkamp T, Diaz A, David C, Pfeiffer F, Stampanoni M, Cloetens P and Ziegler E 2005 Opt. Express 13 6296 3 Pfeiffer F, Weitkamp T, Bunk O and David C 2006 Nat. Phys. 2 258 4 Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry E F, Brönnimann CH, Gr\"unzweig C and David C 2008 Nat. Mater. 7 134 5 Donath T, Chabior M, Pfeiffer F, Bunk O, Reznikova E, Mohr J, Hempel E, Popescu S, Hoheisel M, Schuster M, Baumann J and David C 2009 J. Appl. Phys. 106 054703 6 Momose A, Yashiro W, Kuwabara H and Kawabata K 2009 Jpn. J. Appl. Phys. 48 076512 7 Yashiro W, Terui Y, Kawabata K and Momose A 2010 Opt. Express 18 16890 8 Bravin A, Coan P and Suortti P 2013 Phys. Med. Biol. 58 R1 9 Teshima T, Setomoto Y and Den T 2011 Opt. Lett. 36 3551 10 Momose A, Kuwabara H and Yashiro W 2011 Appl. Phys. Express 4 066603 11 Rigon L, Arfelli F and Menk R H 2007 Appl. Phys. Lett. 90 114012 12 Morimoto N, Fujino S, Ohshima K, Harada J, Hosoi T, Watanabe H and Shimura T 2014 Opt. Lett. 39 4297 13 Liu X, Guo J C, Lei Y H, Li J and Niu H B 2016 Chin. Phys. B 25 028704 14 Yang J, Guo J C, Lei Y H, Yi M H and Chen L 2017 Chin. Phys. B 26 028701 15 Wei C X, Wu Z, Fazi W, Wei W B, Bao Y, Luo R H, Wang L, Liu G and Tian Y C 2017 Chin. Phys. B 26 108701 16 Rong F, Gao Y, Guo C J, Xu W and Xu W 2019 Chin. Phys. B 28 108702 17 Wang Z L, Shi X M, Ren K, Chen H, Ren Y Q, Gao K and Wu Z 2020 J. Synchrotron Rad. 27 494 18 Faiz W, Li J, Gao K, Wu Z, Lei Y H, Huang J H and Zhu P P 2020 Chin. Phys. B 29 014301 19 Willner M, Herzen J, Grandl S, Auweter S D, Mayr D, Hipp A, Chabior M, Sarapata A, Achterhold K, Zanette I, Weitkamp T, Sztròkay A, Hellerhoff K, Reiser M and Pfeiffer F 2014 Phys. Med. Biol. 59 1557 20 Arboleda C, Wang Z, Jefimovs K, Koehler T, Stevendaal U V, Kuhn N, David B, Prevrhal S, Lå ng K, Forte S, Kubik-Huch R A, Leo C, Singer G, Marcon M, Boss A, Roessl E and Stampanoni1 M 2019 Eur. Radiol. 30 1419 21 Sarapata A, Ruiz-Yaniz M, Zanette I, Rack A, Pfeiffer F and Herzen J 2015 Appl. Phys. Lett. 106 154102 22 Ruiz-Yaniz M, Zanette I, Sarapata A, Birnbacher L, Marschner M, Chabior M, Olbinado M, Pfeiffer F and Rack A 2016 J. Synchrotron Rad. 23 1202 23 Ruiz-Yaniz M, Koch F, Zanette I, Rack A, Meyer P, Kunka D, Hipp A, Mohr J and Pfeiffer F 2015 Appl. Phys. Lett. 106 151105 24 Gradl R, Morgan K S, Dierolf M, Jud C, Hehn L, G\"unther B, Möller W, Kutschke D, Yang L, Stoeger T, Pfeiffer D, Gleich B, Achterhold K, Schmid O and Pfeiffer F 2019 IEEE T. Med. Imaging 38 649 25 Miao M, Panna A, Gomella A, Bennett E, Znati S, Chen L and Wen H 2016 Nat. Phys. 12 830 26 Kagias M, Wang Z, Jefimovs K and Stampanoni M 2017 Appl. Phys. Lett. 110 014105 27 Yan A, Wu X and Liu H 2018 Opt. Express 26 23142 28 Yan A, Wu X and Liu H 2019 Opt. Express 27 22727 29 Ge Y S, Chen J W, Zhu P P, Yang J, Deng S W, Shi W, Zhang K, Guo J C, Zhang H T, Zheng H R and Liang D 2020 Opt. Express 28 9786 30 Pandeshwar A, Kagias M, Wang Z and Stampanoni M 2020 Opt. Express 28 19187 31 Wang Z L, Zhu P P, Huang W X, Yuan Q X, Liu X S, Zhang K, Hong Y L, Zhang H T, Ge X, Gao K and Wu Z Y 2010 Anal. Bioanal. Chem. 397 2091 32 Goodman J1985 Statistical Optics(John Wiley and Sons, Inc.) 33 Revol V, Kottler C, Kaufmann R, Straumann U and Urban C 2010 Rev. Sci. Instrum. 81 073709 34 Weber T, Bartl P, Bayer F, Durst J, Haas W, Michel T, Ritter A and Anton G 2011 Med. Phys. 38 4133 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|