Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 044501    DOI: 10.1088/1674-1056/23/4/044501
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Fast synchrotron X-ray tomography study of the packing structures of rods with different aspect ratios

Zhang Xiao-Dan (张晓丹)a, Xia Cheng-Jie (夏成杰)a, Xiao Xiang-Hui (肖相辉)b, Wang Yu-Jie (王宇杰)a
a Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China;
b X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, IL 60439, USA
Abstract  We present a fast synchrotron X-ray tomography study of the packing structures of rods with different aspect ratios. Utilizing the high flux of the X-rays generated from the third-generation synchrotron source, we can complete a high-resolution tomography scan within a short period of time, after which the three-dimensional (3D) packing structure can be obtained for the subsequent structural analysis. The image phase-retrieval procedure has been implemented to enhance the image contrast. We systematically investigated the effects of particle shape and aspect ratio on the structural properties including packing density and contact number. It turns out that large aspect ratio rod packings will have wider distributions of free volume fraction and larger mean contact numbers.
Keywords:  synchrotron X-ray imaging      tomography      rod packing structure  
Received:  04 November 2013      Revised:  02 December 2013      Accepted manuscript online: 
PACS:  45.70.Cc (Static sandpiles; granular compaction)  
  87.59.-e (X-ray imaging)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11175121) and the National Basic Research Program of China (Grant No. 2010CB834301). Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE (Grant No. DE-AC02-06CH11357).
Corresponding Authors:  Wang Yu-Jie     E-mail:  yujiewang@sjtu.edu.cn
About author:  45.70.Cc; 87.59.-e

Cite this article: 

Zhang Xiao-Dan (张晓丹), Xia Cheng-Jie (夏成杰), Xiao Xiang-Hui (肖相辉), Wang Yu-Jie (王宇杰) Fast synchrotron X-ray tomography study of the packing structures of rods with different aspect ratios 2014 Chin. Phys. B 23 044501

[1] Bernal J D 1959 Nature 183 141
[2] Smith W O, Foot Paul D and Busang P F 1929 Phys. Rev. 34 1271
[3] Mansfield M L, Rakesh L and Tomallia D A 1996 J. Chem. Phys. 105 3245
[4] Torquato S and Stillinger F H 2010 Rev. Mod. Phys. 82 2633
[5] Aste T, Saadatfar M and Senden T J 2005 Phys. Rev. E 71 061302
[6] Donev A, Cisse I, Sachs D, Variano E A, Stillinger F H, Connelly R, Torquato S and Chaikin P M 2004 Science 303 990
[7] Fu Y, Xi Y, Cao Y X and Wang Y J 2012 Phys. Rev. E 85 051311
[8] Zhang X D, Xia C J, Sun H H and Wang Y J 2013 AIP Conf. Proc. 1542 365
[9] Anita Mehta and Luck J M 2003 J. Phys. A: Math. Gen. 36 365
[10] Luck J M and Anita Mehta 2003 Eur. Phys. J. B 35 399
[11] Luck J M and Anita Mehta 2010 Eur. Phys. J. B 77 505
[12] Aste T, Saadatfar M and Senden T J 2005 Phys. Rev. E 71 061302
[13] Zhang W, Thompson K E, Reed A H and Beenken L 2006 Chem. Eng. Sci. 61 8060
[14] Paganin D, Mayo S C, Gureyev T E, Miller P R and Wilkins S W 2002 J. Microsc. 206 33
[15] Wang Y J, Im K S, Fezzaa K, Lee W K and Wang J, Micheli P and Laub C 2006 Appl. Phys. Lett. 89 151913
[16] Danisch M, Baule A, Makse H A 2011 arXiv preprint arXiv: 1102.0608
[17] Williams S R and Philipse A P 2003 Phys. Rev. E 67 051301
[18] Blouwolff J and Fraden S 2006 Europhys. Lett. 76 1095
[19] Schaller F M, Neudecker M, Saadatfar M, Delaney G, Mecke K, Schröder-Turk G E and Schröter M 2013 AIP Conf. Proc. 1542 377
[20] Wouterse A, Williams S R and Philipse A P 2007 J. Phys.: Condens. Matter 19 406215
[21] Chaikin P M, Donev A, Man W N, Stillinger F H and Torquato S 2006 Ind. Eng. Chem. Res. 45 6960
[1] Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Chin. Phys. B, 2022, 31(5): 050301.
[2] Deep learning for image reconstruction in thermoacoustic tomography
Qiwen Xu(徐启文), Zhu Zheng(郑铸), and Huabei Jiang(蒋华北). Chin. Phys. B, 2022, 31(2): 024302.
[3] Taking tomographic measurements for photonic qubits 88 ns before they are created
Zhibo Hou(侯志博), Qi Yin(殷琪), Chao Zhang(张超), Han-Sen Zhong(钟翰森), Guo-Yong Xiang(项国勇), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿), Geoff J. Pryde, and Anthony Laing. Chin. Phys. B, 2021, 30(4): 040304.
[4] High-resolution bone microstructure imaging based on ultrasonic frequency-domain full-waveform inversion
Yifang Li(李义方), Qinzhen Shi(石勤振), Ying Li(李颖), Xiaojun Song(宋小军), Chengcheng Liu(刘成成), Dean Ta(他得安), and Weiqi Wang(王威琪). Chin. Phys. B, 2021, 30(1): 014302.
[5] Gaussian process tomography based on Bayesian data analysis for soft x-ray and AXUV diagnostics on EAST
Yan Chao(晁燕), Liqing Xu(徐立清), Liqun Hu(胡立群), Yanmin Duan(段艳敏), Tianbo Wang(王天博), Yi Yuan(原毅), Yongkuan Zhang(张永宽). Chin. Phys. B, 2020, 29(9): 095201.
[6] Magnetoacoustic position imaging for liquid metal in animal interstitial structure
Xiao-He Zhao(赵筱赫), Guo-Qiang Liu(刘国强), Hui Xia(夏慧), Yan-Hong Li(李艳红). Chin. Phys. B, 2020, 29(5): 054305.
[7] Re effects in model Ni-based superalloys investigated with first-principles calculations and atom probe tomography
Dianwu Wang(王殿武), Chongyu Wang(王崇愚), Tao Yu(于涛), Wenqing Liu(刘文庆). Chin. Phys. B, 2020, 29(4): 043103.
[8] Second harmonic magnetoacoustic responses of magnetic nanoparticles in magnetoacoustic tomography with magnetic induction
Gepu Guo(郭各朴), Ya Gao(高雅), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2020, 29(3): 034302.
[9] Performance improvement of magneto-acousto-electrical tomography for biological tissues with sinusoid-Barker coded excitation
Zheng-Feng Yu(余正风), Yan Zhou(周), Yu-Zhi Li(李禹志), Qing-Yu Ma(马青玉), Ge-Pu Guo(郭各朴), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2018, 27(9): 094302.
[10] Observation of geometric phase in a dispersively coupled resonator-qutrit system
Libo Zhang(张礼博), Chao Song(宋超), H Wang(王浩华), Shi-Biao Zheng(郑仕标). Chin. Phys. B, 2018, 27(7): 070303.
[11] Bio-macromolecular dynamic structures and functions, illustrated with DNA, antibody, and lipoprotein
Lu Gou(缑璐), Taoli Jin(金桃丽), Shuyu Chen(陈淑玉), Na Li(李娜), Dongxiao Hao(郝东晓), Shengli Zhang(张胜利), Lei Zhang(张磊). Chin. Phys. B, 2018, 27(2): 028708.
[12] Simulation research on effect of magnetic nanoparticles on physical process of magneto-acoustic tomography with magnetic induction
Xiao-Heng Yan(闫孝姮), Ying Zhang(张莹), Guo-Qiang Liu(刘国强). Chin. Phys. B, 2018, 27(10): 104302.
[13] Two-qubit pure state tomography by five product orthonormal bases
Yu Wang(王宇), Yun Shang(尚云). Chin. Phys. B, 2018, 27(10): 100306.
[14] Boundary normal pressure-based electrical conductivity reconstruction for magneto-acoustic tomography with magnetic induction
Ge-Pu Guo(郭各朴), He-Ping Ding(丁鹤平), Si-Jie Dai(戴思捷), Qing-Yu Ma(马青玉). Chin. Phys. B, 2017, 26(8): 084301.
[15] X-ray tomography study on the structure of the granular random loose packing
Yi Xing(邢义), Yu-Peng Qiu(邱宇鹏), Zhi Wang(王智), Jia-Chao Ye(叶佳超), Xiang-Ting Li(李向亭). Chin. Phys. B, 2017, 26(8): 084503.
No Suggested Reading articles found!