Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 088202    DOI: 10.1088/1674-1056/ac6eec

Adaptive semi-empirical model for non-contact atomic force microscopy

Xi Chen(陈曦)1,†, Jun-Kai Tong(童君开)1,2,†, and Zhi-Xin Hu(胡智鑫)1,‡
1 Center for Joint Quantum Studies and Department of Physics, Institute of Science, Tianjin University, Tianjin 300350, China;
2 State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
Abstract  Non-contact atomic force microscope is a powerful tool to investigate the surface topography with atomic resolution. Here we propose a new approach to estimate the interaction between its tips and samples, which combines a semi-empirical model with density functional theory (DFT) calculations. The generated frequency shift images are consistent with the experiment for mapping organic molecules using CuCO, Cu, CuCl, and CuOx tips. This approach achieves accuracy close to DFT calculation with much lower computational cost.
Keywords:  semi-empirical model      atomic force microscopy      density functional theory      functionalized tips  
Received:  07 April 2022      Revised:  09 May 2022      Accepted manuscript online:  12 May 2022
PACS:  82.20.Wt (Computational modeling; simulation)  
  68.37.Ps (Atomic force microscopy (AFM))  
  68.43.Fg (Adsorbate structure (binding sites, geometry))  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Nature Science Foundation of China (Grant No. 11804247). VASP Calculations were performed at the High-Performance Computing Platform from Center for Joint Quantum Studies of Tianjin University.
Corresponding Authors:  Zhi-Xin Hu     E-mail:

Cite this article: 

Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫) Adaptive semi-empirical model for non-contact atomic force microscopy 2022 Chin. Phys. B 31 088202

[1] Binnig G, Quate, C F, Gi E L and Gerber C 1986 Phys. Rev. Lett. 56 930
[2] Liu M X, Li S C, Zha Z Q and Qiu X H 2017 Acta Phys.-Chim. Sin. 33 183 (in Chinese)
[3] Giessibl F J 2019 Rev. Sci. Instrum. 90 011101
[4] Sugimoto Y, Pou P, Abe M, Jelinek P, Pérez R, Morita S and Custance Ó 2007 Nature 446 64
[5] Setvín M, Mutombo P, Ondráček M, Majzik Z, Švec M, Cháb V, Ošt'ádal I, Sobotík P and Jelínek P 2012 ACS Nano 6 6969
[6] Li Y, Zheng Q, Chang X, Huang L, Lin X, Cheng Z H and Gao H J 2021 Acta Phys. Sin. 70 136802 (in Chinese)
[7] Pang F, Cao F, Lei L, Meng L, Ye S, Xing S, Guo J, Dong H, Hussain S, Gu S, Xu K, Li Y J, Sugawara Y, Ji W, Xu R and Cheng Z 2021 J. Phys. Chem. C 125 8696
[8] Gross L, Mohn F, Moll N, Schuler B, Criado A, Guitián E, Peña D, Gourdon A and Meyer G 2012 Science 337 1326
[9] Ellner M, Pou P and Pérez R 2019 ACS Nano 13 786
[10] Fan D, Sakai Y and Chelikowsky J R 2019 Nano Lett. 19 5562
[11] Pawlak R, Kawai S, Fremy S, Glatzel T and Meyer E 2011 ACS Nano 5 6349
[12] Albrecht F, Pavliček N, Herranz-Lancho C, Ruben M and Repp J 2015 J. Am. Chem. Soc. 137 7424
[13] Guo C S, van Hove M A, Ren X and Zhao Y 2015 J. Phys. Chem. C 119 1483
[14] Moll N, Schuler B, Kawai S, Xu F, Peng L, Orita A, Otera J, Curioni A, Neu M, Repp J, Meyer G and Gross L 2014 Nano Lett. 14 6127
[15] Weymouth A J, Hofmann T and Giessibl F J 2014 Science 343 1120
[16] Gross L, Mohn F, Moll N, Liljeroth P and Meyer G 2009 Science 325 1110
[17] Mohn F, Schuler B, Gross L and Meyer G 2013 Appl. Phys. Lett. 102 073109
[18] Yesilpinar D, Schulze Lammers B, Timmer A, Hu Z, Ji W, Amirjalayer S, Fuchs H and Mönig H 2021 Small 17 2101637
[19] Mönig H, Amirjalayer S, Timmer A, Hu Z, Liu L, Díaz Arado O, Cnudde M, Strassert C A, Ji W, Rohlfing M and Fuchs H 2018 Nature Nanotechnol. 13 371
[20] Moll N, Gross L, Mohn F, Curioni A and Meyer G 2010 New J. Phys. 12 096102
[21] van der Lit J, di Cicco F, Hapala P, Jelinek P and Swart I 2016 Phys. Rev. Lett. 116 125020
[22] Ellner M, Pavliček N, Pou P, Schuler B, Moll N, Meyer G, Gross L and Peréz R 2016 Nano Lett. 16 1974
[23] Moll N, Gross L, Mohn F, Curioni A and Meyer G 2012 New J. Phys. 14 083023
[24] Hapala P, Kichin G, Wagner C, Tautz F S, Temirov R and Jelinek P 2014 Phys. Rev. B 90 085421
[25] Kim M and Chelikowsky J R 2015 Appl. Phys. Lett. 107 163109
[26] Zahl P and Zhang Y 2019 Energy Fuels 33 4775
[27] Wesolowski T A, Shedge S and Zhou X 2015 Chem. Rev. 115 5891
[28] Sakai Y, Lee A J and Chelikowsky J R 2016 Nano Lett. 16 3242
[29] Sasaki N, Aizawa H and Tsukada M 2000 Appl. Surf. Sci. 157 367
[30] Wright C A and Solares S D 2011 Nano Lett. 11 5026
[31] Chan T L, Wang C Z, Ho K M and Chelikowsky J R 2009 Phys. Rev. Lett. 102 176101
[32] Castanié F, Nony L, Gauthier S and Bouju X 2012 Beilstein J. Nanotechnol. 3 301
[33] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[34] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[35] Blöchl P E 1994 Phys. Rev. B 50 17953
[36] Gross L, Schuler B, Mohn F, Moll N, Pavliček N, Steurer W, Scivetti I, Kotsis K, Persson M and Meyer G 2014 Phys. Rev. B 90 155455
[37] Mönig H, Hermoso D R, Arado O D, Todorović M, Timmer A, Schüer S, Langewisch G, Pérez R and Fuchs H 2016 ACS Nano 10 1201
[38] Fan D, Sakai Y and Chelikowsky J R 2020 Phys. Rev. Mater. 4 053802
[39] Timmer A, Möing H, Uphoff M, Arado O D, Amirjalayer S and Fuchs H 2018 Nano Lett. 18 4123
[40] Leng C, You S, Si Y B, Qin H M, Liu J, Huang W Q and Li K Q 2021 J. Phys. Chem. A 125 2905
[41] Ebeling D, Zhong Q, Schlöder T, Tschakert J, Henkel P, Ahles S, Chi L, Mollenhauer D, Wegner H A and Schirmeisen A 2019 ACS Nano 13 324
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[9] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[10] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[11] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[12] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[13] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[14] On-surface synthesis of one-dimensional carbyne-like nanostructures with sp-carbon
Wenze Gao(高文泽), Chi Zhang(张弛), Zheng Zhou(周正), and Wei Xu(许维). Chin. Phys. B, 2022, 31(12): 128101.
[15] Advances and challenges in DFT-based energy materials design
Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Chin. Phys. B, 2022, 31(10): 107105.
No Suggested Reading articles found!