ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Reconstruction model for temperature and concentration profiles of soot and metal-oxide nanoparticles in a nanofluid fuel flame by using a CCD camera |
Guannan Liu(刘冠楠)1,2, Dong Liu(刘冬)1,2 |
1 MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
2 Advanced Combustion Laboratory, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China |
|
|
Abstract This paper presents a numerical study on the simultaneous reconstruction of temperature and volume fraction fields of soot and metal-oxide nanoparticles in an axisymmetric nanofluid fuel sooting flame based on the radiative energy images captured by a charge-coupled device (CCD) camera. The least squares QR decomposition method was introduced to deal with the reconstruction inverse problem. The effects of ray numbers and measurement errors on the reconstruction accuracy were investigated. It was found that the reconstruction accuracies for volume fraction fields of soot and metal-oxide nanoparticles were easily affected by the measurement errors for radiation intensity, whereas only the metal-oxide volume fraction field reconstruction was more sensitive to the measurement error for the volume fraction ratio of metal-oxide nanoparticles to soot. The results show that the temperature, soot volume fraction, and metal-oxide nanoparticles volume fraction fields can be simultaneously and accurately retrieved for exact and noisy data using a single CCD camera.
|
Received: 09 October 2017
Revised: 28 December 2017
Accepted manuscript online:
|
PACS:
|
44.40.+a
|
(Thermal radiation)
|
|
44.05.+e
|
(Analytical and numerical techniques)
|
|
02.30.Zz
|
(Inverse problems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No.51576100) and the Project of "Six Talent Summit" of Jiangsu Province,China (Grant No.2014-XNY-002). |
Corresponding Authors:
Dong Liu
E-mail: dongliu@njust.edu.cn
|
Cite this article:
Guannan Liu(刘冠楠), Dong Liu(刘冬) Reconstruction model for temperature and concentration profiles of soot and metal-oxide nanoparticles in a nanofluid fuel flame by using a CCD camera 2018 Chin. Phys. B 27 054401
|
[12] |
Xuan Y M and Li Q 2003 J. Heat Transf. 125 151
|
[1] |
Basu S and Miglani A 2016 Int. J. Heat Mass Transf. 96 482
|
[13] |
Xuan Y M and Li Q 2000 Int. J. Heat Fluid Flow 21 58
|
[2] |
Choi S U S 2009 J. Heat Transfer 131 033106
|
[14] |
Xing J J, Wu Z H, Xie H Q, Wang Y Y, Li Y H and Mao J H 2017 Chin. Phys. B 26 104401
|
[3] |
Jones M, Li C H, Afjeh A and Peterson G 2011 Nanoscale Res. Lett. 6 246
|
[15] |
Zhou X F and Gao L 2007 Chin. Phys. 16 2028
|
[4] |
Wen D S 2010 Energy Environ. Sci. 3 591
|
[16] |
Hayat T, Imtiaz M, Alsaedi A and and Mansoor R 2014 Chin. Phys. B 23 054701
|
[5] |
Javed I, Baek S W and Waheed K 2015 Combust. Flame 162 191
|
[17] |
Gan Y N and Qiao L 2011 Combust. Flame 158 354
|
[6] |
Javed I, Baek S W and Waheed K 2015 Combust. Flame 162 774
|
[18] |
Gan Y N, Lim Y S and Qiao L 2012 Combust. Flame 159 1732
|
[7] |
Sabourin J L, Dabbs D M, Yetter R A, Dryer F L and Aksay I A 2009 Acs Nano 3 3945
|
[19] |
Tanvir S and Qiao L 2016 Combust. Flame 166 34
|
[8] |
Huang X F and Li S J 2016 Fuel 177 113
|
[20] |
Liu G N and Liu D 2017 Sci. China Technol. Sci. 60 1075
|
[9] |
Selvan V A M, Anand R B and Udayakumar M 2014 Fuel 130 160
|
[21] |
Zhou H C, Han S D, Sheng F and Zheng C G 2002 J. Quant. Spectrosc. Radiat. Transf. 72 361
|
[10] |
Sarvestany N S, Farzad A, Bajestan E E and Mir M 2014 J. Dispers. Sci. Technol. 35 1745
|
[22] |
Snelling D R, Thomson K A, Smallwood G J, Gülder O L, Weckman E J and Fraser R A 2002 AIAA J. 40 1789
|
[11] |
Xuan Y M, Li Q and Hu W 2003 AICHE J. 49 1038
|
[23] |
Brisley P M, Lu G, Yan Y and Cornwell S 2005 IEEE Trans. Instrum. Meas. 54 1417
|
[12] |
Xuan Y M and Li Q 2003 J. Heat Transf. 125 151
|
[24] |
Lou C and Zhou H C 2005 Combust. Flame 143 97
|
[13] |
Xuan Y M and Li Q 2000 Int. J. Heat Fluid Flow 21 58
|
[25] |
Lu G, Yan Y, Cornwell S and Riley G 2006 Proc. IEEE 55 1658
|
[14] |
Xing J J, Wu Z H, Xie H Q, Wang Y Y, Li Y H and Mao J H 2017 Chin. Phys. B 26 104401
|
[26] |
Lou C, Zhou H C, Yu P F and Jiang Z W 2007 Proc. Combust. Inst. 31 2771
|
[15] |
Zhou X F and Gao L 2007 Chin. Phys. 16 2028
|
[27] |
Wang F, Liu D, Cen K F, Yan J H, Huang Q X and Chi Y 2008 J. Quant. Spectrosc. Radiat. Transf. 109 2171
|
[16] |
Hayat T, Imtiaz M, Alsaedi A and and Mansoor R 2014 Chin. Phys. B 23 054701
|
[28] |
Liu D, Wang F, Huang Q X, Yan J H, Chi Y and Cen K F 2008 Chin. Phys. B 17 1312
|
[17] |
Gan Y N and Qiao L 2011 Combust. Flame 158 354
|
[29] |
Liu D, Wang F, Huang Q X, Yan J H, Chi Y and Cen K F 2008 Acta Phys. Sin. 57 4812(in Chinese)
|
[18] |
Gan Y N, Lim Y S and Qiao L 2012 Combust. Flame 159 1732
|
[30] |
Liu D, Wang F, Cen K F, Yan J H, Huang Q X and Chi Y 2008 Opt. Lett. 33 422
|
[19] |
Tanvir S and Qiao L 2016 Combust. Flame 166 34
|
[31] |
Huang Q X, Wang F, Liu D, Ma Z Y, Yan J H, Chi Y and Cen C F 2009 Combust. Flame 156 565
|
[20] |
Liu G N and Liu D 2017 Sci. China Technol. Sci. 60 1075
|
[32] |
Liu D, Yan J H, Wang F, Huang Q X, Chi Y and Cen K F 2010 Int. J. Heat Mass Transf. 53 4474
|
[21] |
Zhou H C, Han S D, Sheng F and Zheng C G 2002 J. Quant. Spectrosc. Radiat. Transf. 72 361
|
[33] |
Liu D, Huang Q X, Wang F, Chi Y, Cen K F and Yan J H 2010 J. Heat Transfer 132 061202
|
[22] |
Snelling D R, Thomson K A, Smallwood G J, Gülder O L, Weckman E J and Fraser R A 2002 AIAA J. 40 1789
|
[34] |
Yan J H, Wang F, Huang Q X, Chi Y, Cen K F and Liu D 2011 Acta Phys. Sin. 60 060701(in Chinese)
|
[23] |
Brisley P M, Lu G, Yan Y and Cornwell S 2005 IEEE Trans. Instrum. Meas. 54 1417
|
[35] |
Liu D, Yan J H and Cen K F 2011 Int. J. Heat Mass Transf. 54 1684
|
[24] |
Lou C and Zhou H C 2005 Combust. Flame 143 97
|
[36] |
Liu D, Yan J H and Cen K F 2012 Int. J. Heat Mass Transf. 55 1553
|
[25] |
Lu G, Yan Y, Cornwell S and Riley G 2006 Proc. IEEE 55 1658
|
[37] |
Liu D, Yan J H, Wang F, Huang Q X, Chi Y and Cen K F 2012 Fuel 93 397
|
[26] |
Lou C, Zhou H C, Yu P F and Jiang Z W 2007 Proc. Combust. Inst. 31 2771
|
[38] |
Niu C Y, Qi H, Huang X, Ruan L M, Wang W and Tan H P 2015 Chin. Phys. B 24 114401
|
[27] |
Wang F, Liu D, Cen K F, Yan J H, Huang Q X and Chi Y 2008 J. Quant. Spectrosc. Radiat. Transf. 109 2171
|
[39] |
Niu C Y, Qi H, Lew Z Y, Ruan L M and Tan H P 2015 3nd International Workshop on Heat Transfer Advances for Energy Conservation and Pollution Control, October 16-19, Taipei, Taiwan, China
|
[28] |
Liu D, Wang F, Huang Q X, Yan J H, Chi Y and Cen K F 2008 Chin. Phys. B 17 1312
|
[40] |
Ni M J, Zhang H D, Wang F, Xie Z C, Huang Q X, Yan J H and Cen K F 2016 Appl. Therm. Eng. 96 421
|
[29] |
Liu D, Wang F, Huang Q X, Yan J H, Chi Y and Cen K F 2008 Acta Phys. Sin. 57 4812(in Chinese)
|
[41] |
Sun J, Xu C L, Zhang B, Wang S M, Hossain M M, Qi H and Tan H P 2016 Instrum. Meas. Technol. Conf. Proc. 1-6
|
[30] |
Liu D, Wang F, Cen K F, Yan J H, Huang Q X and Chi Y 2008 Opt. Lett. 33 422
|
[42] |
Liu D 2016 Therm. Sci. 20 493
|
[31] |
Huang Q X, Wang F, Liu D, Ma Z Y, Yan J H, Chi Y and Cen C F 2009 Combust. Flame 156 565
|
[43] |
Xu C L, Zhao W C, Hu J H, Zhang B and Wang S M 2017 Fuel 196 550
|
[32] |
Liu D, Yan J H, Wang F, Huang Q X, Chi Y and Cen K F 2010 Int. J. Heat Mass Transf. 53 4474
|
[44] |
Niu C Y, Qi H, Huang X, Ruan L M and Tan H P 2016 J. Quant. Spectrosc. Radiat. Transf. 184 44
|
[33] |
Liu D, Huang Q X, Wang F, Chi Y, Cen K F and Yan J H 2010 J. Heat Transfer 132 061202
|
[45] |
Huang X, Qi H, Niu C Y, Ruan L M, Tan H P, Sun J and Xu C L 2017 Appl. Therm. Eng. 115 1337
|
[34] |
Yan J H, Wang F, Huang Q X, Chi Y, Cen K F and Liu D 2011 Acta Phys. Sin. 60 060701(in Chinese)
|
[46] |
Zhou H C, Luo C and Lu J 2008 The 6th International Symposium on Measurement Techniques for Multiphase Flows, December 15-17, 2008, Okinawa, Japan, p. 012086
|
[35] |
Liu D, Yan J H and Cen K F 2011 Int. J. Heat Mass Transf. 54 1684
|
[47] |
Yan W J, Zheng S and Zhou H C 2017 Appl. Therm. Eng. 124 1014
|
[36] |
Liu D, Yan J H and Cen K F 2012 Int. J. Heat Mass Transf. 55 1553
|
[48] |
Modest M F 2003 Radiative Heat Transfer, 2nd edn. (America:Academic Press) pp. 361-412
|
[37] |
Liu D, Yan J H, Wang F, Huang Q X, Chi Y and Cen K F 2012 Fuel 93 397
|
[49] |
Querry M R 1985 Optical Constants p. 12
|
[38] |
Niu C Y, Qi H, Huang X, Ruan L M, Wang W and Tan H P 2015 Chin. Phys. B 24 114401
|
[50] |
Chang H and Charalampopoulos T T 1990 Proc. R. Soc. A 430 577
|
[39] |
Niu C Y, Qi H, Lew Z Y, Ruan L M and Tan H P 2015 3nd International Workshop on Heat Transfer Advances for Energy Conservation and Pollution Control, October 16-19, Taipei, Taiwan, China
|
[51] |
Lanczons C 1950 J. Res. Natl. Bur. Stand. 45 255
|
[40] |
Ni M J, Zhang H D, Wang F, Xie Z C, Huang Q X, Yan J H and Cen K F 2016 Appl. Therm. Eng. 96 421
|
[52] |
Paige C C and Saunders M A 1982 AMC Trans. Math. Softw. 8 43
|
[41] |
Sun J, Xu C L, Zhang B, Wang S M, Hossain M M, Qi H and Tan H P 2016 Instrum. Meas. Technol. Conf. Proc. 1-6
|
[53] |
Paige C C and Saunders M A 1982 AMC Trans. Math. Softw. 8 195
|
[42] |
Liu D 2016 Therm. Sci. 20 493
|
[54] |
Köylü Ü Ö, McEnally C S, Rosner D E and Pfefferle L D 1997 Combust. Flame 110 494
|
[43] |
Xu C L, Zhao W C, Hu J H, Zhang B and Wang S M 2017 Fuel 196 550
|
[55] |
Xu Z W, Zhao H B, Chen X B and Lou C 2017 Combust. Flame 180 158
|
[44] |
Niu C Y, Qi H, Huang X, Ruan L M and Tan H P 2016 J. Quant. Spectrosc. Radiat. Transf. 184 44
|
[56] |
Xu Z W and Zhao H B 2015 Combust. Flame 162 2200
|
[45] |
Huang X, Qi H, Niu C Y, Ruan L M, Tan H P, Sun J and Xu C L 2017 Appl. Therm. Eng. 115 1337
|
[46] |
Zhou H C, Luo C and Lu J 2008 The 6th International Symposium on Measurement Techniques for Multiphase Flows, December 15-17, 2008, Okinawa, Japan, p. 012086
|
[47] |
Yan W J, Zheng S and Zhou H C 2017 Appl. Therm. Eng. 124 1014
|
[48] |
Modest M F 2003 Radiative Heat Transfer, 2nd edn. (America:Academic Press) pp. 361-412
|
[49] |
Querry M R 1985 Optical Constants p. 12
|
[50] |
Chang H and Charalampopoulos T T 1990 Proc. R. Soc. A 430 577
|
[51] |
Lanczons C 1950 J. Res. Natl. Bur. Stand. 45 255
|
[52] |
Paige C C and Saunders M A 1982 AMC Trans. Math. Softw. 8 43
|
[53] |
Paige C C and Saunders M A 1982 AMC Trans. Math. Softw. 8 195
|
[54] |
Köylü Ü Ö, McEnally C S, Rosner D E and Pfefferle L D 1997 Combust. Flame 110 494
|
[55] |
Xu Z W, Zhao H B, Chen X B and Lou C 2017 Combust. Flame 180 158
|
[56] |
Xu Z W and Zhao H B 2015 Combust. Flame 162 2200
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|