Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 077102    DOI: 10.1088/1674-1056/ac600f
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Impact of composition ratio on the structure and optical properties of (1-x)MnFe2O4/(x)ZnMn2O4 nanocomposite

Zein K. Heiba1, Mohamed Bakr Mohamed1,2,†, Ali A. Alkathiri3, Sameh I. Ahmed3, A A Alhazime2
1 Department of Physics, Faculty of Science, Ain shams University, Cairo 11566, Egypt;
2 Physics Department, Faculty of Science, Taibah University, Al-Madina al Munawarah, Saudi Arabia;
3 Depatment of Physics, College of Science, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
Abstract  ($1-x$)MnFe$_{2}$O$_{4}$ (MFO)/$x$ZnMn$_{2}$O$_{4}$ (ZMO) ($x=0$, 0.2, 0.5, 0.8, and 1.0) nanocomposite samples were prepared using co-precipitation procedure. The phase percentage, cell parameters, and crystallite size of MFO and ZMO phases in each nanocomposite sample were calculated using Rietveld refinement procedure. The x-ray diffraction (XRD) analysis and Fourier-transform infrared spectroscopy techniques established the variation in the lattice parameters of each phase are due to permutation of all cations among the octahedral and tetrahedral sites of MFO and ZMO. The different oxidation states of different ions in all samples were determined using x-ray photoelectron spectroscopy (XPS) technique. The variation in absorbance of the nanocomposite samples with composition parameter ($x$) is dependent on the wavelength region. The optical bandgap of the nanocomposite samples is decreased as the content of ZMO phase increased. The effect of alloying on the refractive index, extinction coefficient, dielectric constant, optical conductivity, and the nonlinear optical behaviors of all samples were studied in detail. The nanocomposite sample $x=0.5$ disclosed upgraded optical parameters with the highest refractive index, optical conductivity, and PL intensity, which nominate it to be functional in various application fields.
Keywords:  MFO and ZMO composite      XPS      structure      optical  
Received:  12 December 2021      Revised:  13 March 2022      Accepted manuscript online:  23 March 2022
PACS:  71.20.Nr (Semiconductor compounds)  
  78.55.-m (Photoluminescence, properties and materials)  
  81.07.Bc (Nanocrystalline materials)  
Fund: The authors acknowledge Taif University Research Supporting Project number (TURSP-2020/66), Taif University, Taif, Saudi Arabia.
Corresponding Authors:  Mohamed Bakr Mohamed     E-mail:  mbm1977@yahoo.com

Cite this article: 

Zein K. Heiba, Mohamed Bakr Mohamed, Ali A. Alkathiri, Sameh I. Ahmed, A A Alhazime Impact of composition ratio on the structure and optical properties of (1-x)MnFe2O4/(x)ZnMn2O4 nanocomposite 2022 Chin. Phys. B 31 077102

[1] Heiba Z K, Mohamed M B, El-naggar A M and Altowairqi Y 2021 Appl. Phys. A 127 1
[2] Heiba Z K, Deyab M A, El-naggar A M and Mohamed M B 2021 Ceram. Int. 47 7475
[3] Farag N M, Deyab M A, El-naggar A M, Aldhafiri A M, Mohamed M B and Heiba Z K 2021 J. Mater. Res. Technol. 10 1415
[4] Meena S, Anantharaju K S, Vidya Y S, Renuka L, Uma B, Sharma S C, Prasad B D and More S S 2021 Ceram. Int. 47 14760
[5] Li X, Hou Y, Zhao Q and Wang L 2011 J. Colloid Interface Sci. 358 102
[6] Heiba Z K, Ghannam M M, Sanad M M S, Albassam A A and Mohamed M B 2020 J. Mater. Sci.:Mater. Electron. 31 8946
[7] Ghannam M M, Heiba Z K, Sanad M M S and Mohamed M B 2020 Appl. Phys. A 126 1
[8] Heiba Z K, Albassam A A and Mohamed M B 2020 Appl. Phys. A 126 1)
[9] Heiba Z K and Mohamed M B 2020 J. Inorg. Organomet. Polym. Mater. 30 879
[10] Zhao W, Wei Z, Zhang X, Ding M, Huang S and Yang S 2020 Appl. Catal. A:Gen. 593 117443
[11] Patade S R, Andhare D D, Kharat P B, Humbe A V and Jadhav K M 2020 Chem. Phys. Lett. 745 137240
[12] Pang Y, Kong L, Chen D and Yuvaraja G 2019 Appl. Surf. Sci. 471 408
[13] Cam N T D, Pham H D, Pham T D, et al. 2021 Ceram. Int. 47 1686
[14] Vignesh K, Suganthi A, Min B K and Kang M 2014 J. Mol. Catal. Chem. 395 373
[15] Mondal D K, Borgohain C, Paul N and Borah J P 2019 Physica B:Condens. Matter 567 122
[16] Chinnathambi A, Nasif O, Alharbi S A and Khan S S 2021 Mater. Sci. Semicond. Process. 134 105992
[17] Abdel-Wahed M S, El-Kalliny A S, Badawy M I, Attia M S and Gad-Allah T A 2020 Chem. Eng. Sci. 382 122936
[18] Heiba Z K, Mohamed M B, Ghannam M M, El-naggar A M and Altowairqi Y 2021 J. Mater. Sci.:Mater. Electron. 32 19529
[19] Heiba Z K, Mohamed M B, Ghannam M M and Ahmed S I 2021 Appl. Phys. A 127 1
[20] Tauc J, Grigorovici R and Vancu A 1966 Phys. Status Solidi 15 627
[21] Heiba Z K, Mohamed M B, Badawi A and Alhazime A A 2021 Chem. Phys. Lett. 770 138460
[22] Rodríguez-Carvajal J 1993 Physics B (Amsterdam, Neth.) 192 55
[23] Lutterotti L 2010 Phys. Res. B 268 334
[24] El-naggar A M, Mohamed M B, Aldhafiri A M and Heiba Z K 2020 J. Mater. Res. Technol. 9 16435
[25] Heiba Z K and Mohamed M B 2018 Appl. Phys. A 124 1
[26] Gherbi R, Bessekhouad Y and Trar M 2016 J. Alloys Compd. 655 188
[27] Heiba Z K, Shaltout A A, Ahmed S I, Alzahrani E, Wahba H H, Deyab M A and Mohamed M B 2021 Appl. Phys. A 127 1
[28] Fan B B, Hu A P, Chen X H, Zhang S Y, et al. 2016 Electrochim. Acta 213 37
[29] Yin L, Adler I, Tsang T, Matienzo L and Grim S 1974 Chem. Phys. Lett. 24 81
[30] Hong D, Yamada Y, Nagatomi T, Takai Y and Fukuzumi S 2012 J. Am. Chem. Soc. 134 19572
[31] Xue P, Jiang S, Li W, Shi K, Ma L and Li P 2021 Bioprocess. Biosyst. Eng. 44 1119
[32] Zhang C, Xie A, Zhang W, Chang J, Liu C, Gu L, Duo X, Pan F and Luo S 2021 J. Energy Storage 34 102181
[33] Wang D W, Wang Q H and Wang T M 2011 Inorg. Chem. 50 6482
[34] Koninck M D, Poirier S C and Marsan B 2006 J. Electrochem. Soc. 153 2103
[35] Tao X, Shi W, Zeng B, Zhao Y, Ta N, Wang S, Adenle A A, Li R and Li C 2020 ACS Catal. 10 5941
[36] Baig M M, Zulfiqar S, Yousuf M A, Touqeer M, Ullah S, Agboola P O, Warsi M F and Shakir I 2020 Ceram. Int. 46 23208
[37] Gherbi R, Bessekhouad Y and Trari M 2016 J. Phys. Chem. Solids 89 69
[38] Heiba Z K, Mohamed M B, Ahmed S I, El-naggar A M and Albassam A A 2020 J. Mater. Sci.:Mater. Electron. 31 14746
[39] Mondal D K, Borgohain C, Paul N and Borah J P 2019 Physica B:Condens. Matter 567 122
[40] Singha D K and Mahataa P 2017 Dalton Trans. 46 11344
[41] Heiba Z K, Mohamed M B and Imam N G 2017 J. Supercond. Nov. Magn. 30 3123
[42] Manikandan A, Vijaya J J, Kennedy L J and Bououdina M 2013 J. Mol. Struct. 332 1035
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[3] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[4] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[5] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[6] Tunable phonon-atom interaction in a hybrid optomechanical system
Yao Li(李耀), Chuang Li(李闯), Jiandong Zhang(张建东),Ying Dong(董莹), and Huizhu Hu(胡慧珠). Chin. Phys. B, 2023, 32(4): 044213.
[7] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[8] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[9] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[10] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[11] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[12] Mid-infrared lightly Er3+-doped CaF2 laser under acousto-optical modulation
Yuan-Hao Zhao(赵元昊), Meng-Yu Zong(宗梦雨), Jia-Hao Dong(董佳昊), Zhen Zhang(张振), Jing-Jing Liu(刘晶晶), Jie Liu(刘杰), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2023, 32(3): 034203.
[13] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[14] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[15] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagneticproperties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
No Suggested Reading articles found!