Special Issue:
SPECIAL TOPIC — The third carbon: Carbyne with one-dimensional sp-carbon
|
TOPICAL REVIEW—The third carbon: Carbyne with one-dimensional sp-carbon |
Prev
Next
|
|
|
Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects |
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg† |
Institut für Physik and IRIS Adlershof, Humboldt Universität zu Berlin, 12489 Berlin, Germany |
|
|
Abstract Carbyne is an infinitely long linear chain of carbon atoms with sp1 hybridization and the truly one-dimensional allotrope of carbon. While obtaining freestanding carbyne is still an open challenge, the study of confined carbyne, linear chains of carbon encapsulated in carbon nanotubes, provides a pathway to explore carbyne and its remarkable properties in a well-defined environment. In this review, we discuss the basics and recent advances in studying single confined carbyne chains by Raman spectroscopy, which is their primary spectroscopic characterization method. We highlight where single carbyne chain studies are needed to advance our understanding of confined carbyne as a material system and provide an overview of the open questions that need to be addressed and of those aspects currently under debate.
|
Received: 01 July 2022
Revised: 22 September 2022
Accepted manuscript online: 29 September 2022
|
PACS:
|
78.67.Ch
|
(Nanotubes)
|
|
78.67.Uh
|
(Nanowires)
|
|
Fund: Johannes M. A. Lechner, Pablo Hernandez López, and Sebastian Heeg acknowledge funding from the Deutsche Forschungsgemeinschaft (DFG) under the Emmy Noether Initiative (HE 8642/1-1). |
Corresponding Authors:
Sebastian Heeg
E-mail: sebastian.heeg@physik.hu-berlin.de
|
Cite this article:
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects 2022 Chin. Phys. B 31 127801
|
[1] Casari C S, Tommasini M, Tykwinski R R and Milani A 2016 Nanoscale 8 4414 [2] Heimann R B and Kavan L 1999 Carbyne and carbynoid structures (Kluwer Academic) p. 444 [3] Heeg S, Shi L, Poulikakos L V, Pichler T and Novotny L 2018 Nano Lett. 18 5426 [4] Liu M, Artyukhov V I, Lee H, Xu F and Yakobson B I 2013 ACS Nano 7 10075 [5] Casari C S and Milani A 2018 MRS Commun. 8 207 [6] Wang M and Lin S 2015 Sci. Rep. 5 [7] Baeyer A 1885 Berichte der deutschen chemischen Gesellschaft 18 674 [8] Szafert S and Gladysz J A 2003 Chem. Rev. 103 4175 [9] Chalifoux W A and Tykwinski R R 2010 Nat. Chem. 2 967 [10] Gao Y, Hou Y, Gámez F G, Ferguson M J, Casado J and Tykwinski R R 2020 Nat. Chem. 12 1143 [11] Fantini C, Cruz E, Jorio A, Terrones M, Terrones H, Lier G V, Charlier J C, Dresselhaus M S, Saito R, Kim Y A, Hayashi T, Muramatsu H, Endo M and Pimenta M A 2006 Phys. Rev. B 73 193408 [12] Zhao X, Ando Y, Liu Y, Jinno M and Suzuki T 2003 Phys. Rev. Lett. 90 187401 [13] Malard L M, Nishide D, Dias L G, Capaz R B, Gomes A P, Jorio A, Achete C A, Saito R, Achiba Y, Shinohara H and Pimenta M A 2007 Phys. Rev. B 76 233412 [14] Shi L, Rohringer P, Suenaga K, Niimi Y, Kotakoski J, Meyer J C, Peterlik H, Wanko M, Cahangirov S, Rubio A, Lapin Z J, Novotny L, Ayala P and Pichler T 2016 Nat. Mater. 15 634 [15] Shi L, Rohringer P, Wanko M, Rubio A, Waß erroth S, Reich S, Cambré S, Wenseleers W, Ayala P and Pichler T 2017 Phys. Rev. Mater. 1 075601 [16] Andrade N F, Aguiar A L, Kim Y A, Endo M, Freire P T C, Brunetto G, Galvao D S, Dresselhaus M S and Filho A G S 2015 J. Phys. Chem. C 119 10669 [17] Andrade N, Vasconcelos T, Gouvea C, Archanjo B, Achete C, Kim Y, Endo M, Fantini C, Dresselhaus M and Filho A S 2015 Carbon 90 172 [18] Neves W, Alencar R, Ferreira R, Torres-Dias A, Andrade N, San-Miguel A, Kim Y, Endo M, Kim D, Muramatsu H, Aguiar A and Filho A S 2018 Carbon 133 446 [19] Zhang K, Zhang Y and Shi L 2020 Chin. Chem. Lett. 31 1746 [20] Heeg S, Shi L, Pichler T and Novotny L 2018 Carbon 139 581 [21] Tschannen C D, Gordeev G, Reich S, Shi L, Pichler T, Frimmer M, Novotny L and Heeg S 2020 Nano Lett. 20 6750 [22] Tschannen C D, Frimmer M, Gordeev G, Vasconcelos T L, Shi L, Pichler T, Reich S, Heeg S and Novotny L 2021 ACS Nano 15 12249 [23] Rohringer P, Shi L, Ayala P and Pichler T 2016 Adv. Funct. Mater. 26 4874 [24] Milani A, Tommasini M, Russo V, Bassi A L, Lucotti A, Cataldo F and Casari C S 2015 Beilstein J. Nanotechnology 6 480 [25] Reich S and Thomsen C 2004 Philos. Trans. Royal Soc. London Ser. A 362 2271 [26] Thomsen C and Reich S 2006 Topics in Applied Physics (Berlin, Heidelberg: Springer) pp. 115-234 [27] Tian B and Zerbi G 1990 J. Chem. Phys. 92 3892 [28] Jorio A, Can çado L G, Heeg S, Novotny L and Hartschuh A 2019 Handbook of Carbon Nanomaterials (World Scientific) pp. 175-221 [29] Reich S, Thomsen C and Maultzsch J 2004 Carbon Nanotubes (Wiley-VCH) p. 224 [30] Martinati M, Wenseleers W, Shi L, Pratik S M, Rohringer P, Cui W, Pichler T, Coropceanu V, Brédas J L and Cambré S 2022 Carbon 189 276 [31] Duesberg G S, Loa I, Burghard M, Syassen K and Roth S 2000 Phys. Rev. Lett. 85 5436 [32] Tschannen C D, Frimmer M, Vasconcelos T L, Shi L, Pichler T and Novotny L 2022 Nano Lett. 22 3260 [33] Tschannen C D, Vasconcelos T L and Novotny L 2022 J. Chem. Phys. 156 044203 [34] Gordeev G, Wasserroth S, Li H, Flavel B and Reich S 2021 Nano Lett. 21 6732 [35] Shi L, Senga R, Suenaga K, Kataura H, Saito T, Paz A P, Rubio A, Ayala P and Pichler T 2021 Nano Lett. 21 1096 [36] Sharma K, Costa N L, Kim Y. A, Muramatsu H, Neto N M B, Martins L G, Kong J, Paschoal A R and Araujo P T 2020 Phys. Rev. Lett. 125 105501 [37] Costa N, Sharma K, Kim Y A, Choi G B, Endo M, Neto N M B, Paschoal A R and Araujo P T 2021 Phys. Rev. Lett. 126 125901 [38] Hu Y H 2011 J. Phys. Chem. C 115 1843 [39] Baughman R H 2006 Science 312 1009 [40] Castelli I E, Salvestrini P and Manini N 2012 Phys. Rev. B 85 214110 [41] Wanko M, Cahangirov S, Shi L, Rohringer P, Lapin Z J, Novotny L, Ayala P, Pichler T and Rubio A 2016 Phys. Rev. B 94 195422 [42] Kotrechko S, Mikhailovskij I, Mazilova T, Sadanov E, Timoshevskii A, Stetsenko N and Matviychuk Y 2015 Nanoscale Res. Lett. 10 [43] Rusznyáak Á, Zólyomi V, Kürti J, Yang S and Kertesz M 2005 Phys. Rev. B 72 155420 [44] Argaman U and Makov G 2022 Nanoscale Advances [45] Tomohiro T, Soo K C, Takuya H and Ahm K Y 2018 Carbon Lett. 28 60 [46] Berdiyorov G, Eshonqulov G and Hamoudi H 2020 Comput. Mater. Sci. 183 109809 [47] Berdiyorov G R, Khalilov U, Hamoudi H and Neyts E C 2021 J. Comput. Electron. 20 848 [48] Artyukhov V I, Liu M and Yakobson B I 2014 Nano Lett. 14 4224 [49] Gao E, Li R and Baughman R H 2020 ACS Nano 14 17071 [50] Gao E, Zhou K, Shi L and Xu Z 2022 Phys. Rev. Lett. 128 219601 [51] Neves W, Ferreira R, Kim Y, Endo M, Choi G, Muramatsu H, Aguiar A, Alencar R and Filho A S 2022 Carbon 196 20 [52] Sun Y and Thompson S E 2007 J. Appl. Phys. 101 104503 [53] Sharma K, Costa N L, Kim Y A, Muramatsu H, Neto N M B, Martins L G, Kong J, Paschoal A R and Araujo P T 2022 Phys. Rev. Lett. 128 219602 [54] Yang X, Lv C, Yao Z, Yao M, Qin J, Li X, Shi L, Du M, Liu B and Shan C X 2020 Carbon 159 266 [55] Lucotti A, Tommasini M, Chalifoux W A, Fazzi D, Zerbi G and Tykwinski R R 2011 J. Raman Spectroscopy 43 95 [56] Alencar R S, Aguiar A L, Paschoal A R, Freire P T C, Kim Y A, Muramatsu H, Endo M, Terrones H, Terrones M, San-Miguel A, Dresselhaus M S and Filho A G S 2014 J. Phys. Chem. C 118 8153 [57] Silva-Santos S, Alencar R, Aguiar A, Kim Y, Muramatsu H, Endo M, Blanchard N, San-Miguel A and Filho A S 2019 Carbon 141 568 [58] Romanin D, Monacelli L, Bianco R, Errea I, Mauri F and Calandra M 2021 J. Phys. Chem. Lett. 12 10339 [59] Liu X, Zhang G and Zhang Y W 2015 J. Phys. Chem. C 119 24156 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|