Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 127801    DOI: 10.1088/1674-1056/ac9608
Special Issue: SPECIAL TOPIC — The third carbon: Carbyne with one-dimensional sp-carbon
TOPICAL REVIEW—The third carbon: Carbyne with one-dimensional sp-carbon Prev   Next  

Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects

Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg
Institut für Physik and IRIS Adlershof, Humboldt Universität zu Berlin, 12489 Berlin, Germany
Abstract  Carbyne is an infinitely long linear chain of carbon atoms with sp1 hybridization and the truly one-dimensional allotrope of carbon. While obtaining freestanding carbyne is still an open challenge, the study of confined carbyne, linear chains of carbon encapsulated in carbon nanotubes, provides a pathway to explore carbyne and its remarkable properties in a well-defined environment. In this review, we discuss the basics and recent advances in studying single confined carbyne chains by Raman spectroscopy, which is their primary spectroscopic characterization method. We highlight where single carbyne chain studies are needed to advance our understanding of confined carbyne as a material system and provide an overview of the open questions that need to be addressed and of those aspects currently under debate.
Keywords:  carbyne      linear carbon chains      carbon nanotubes      Raman spectroscopy  
Received:  01 July 2022      Revised:  22 September 2022      Accepted manuscript online:  29 September 2022
PACS:  78.67.Ch (Nanotubes)  
  78.67.Uh (Nanowires)  
Fund: Johannes M. A. Lechner, Pablo Hernandez López, and Sebastian Heeg acknowledge funding from the Deutsche Forschungsgemeinschaft (DFG) under the Emmy Noether Initiative (HE 8642/1-1).
Corresponding Authors:  Sebastian Heeg     E-mail:  sebastian.heeg@physik.hu-berlin.de

Cite this article: 

Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects 2022 Chin. Phys. B 31 127801

[1] Casari C S, Tommasini M, Tykwinski R R and Milani A 2016 Nanoscale 8 4414
[2] Heimann R B and Kavan L 1999 Carbyne and carbynoid structures (Kluwer Academic) p. 444
[3] Heeg S, Shi L, Poulikakos L V, Pichler T and Novotny L 2018 Nano Lett. 18 5426
[4] Liu M, Artyukhov V I, Lee H, Xu F and Yakobson B I 2013 ACS Nano 7 10075
[5] Casari C S and Milani A 2018 MRS Commun. 8 207
[6] Wang M and Lin S 2015 Sci. Rep. 5
[7] Baeyer A 1885 Berichte der deutschen chemischen Gesellschaft 18 674
[8] Szafert S and Gladysz J A 2003 Chem. Rev. 103 4175
[9] Chalifoux W A and Tykwinski R R 2010 Nat. Chem. 2 967
[10] Gao Y, Hou Y, Gámez F G, Ferguson M J, Casado J and Tykwinski R R 2020 Nat. Chem. 12 1143
[11] Fantini C, Cruz E, Jorio A, Terrones M, Terrones H, Lier G V, Charlier J C, Dresselhaus M S, Saito R, Kim Y A, Hayashi T, Muramatsu H, Endo M and Pimenta M A 2006 Phys. Rev. B 73 193408
[12] Zhao X, Ando Y, Liu Y, Jinno M and Suzuki T 2003 Phys. Rev. Lett. 90 187401
[13] Malard L M, Nishide D, Dias L G, Capaz R B, Gomes A P, Jorio A, Achete C A, Saito R, Achiba Y, Shinohara H and Pimenta M A 2007 Phys. Rev. B 76 233412
[14] Shi L, Rohringer P, Suenaga K, Niimi Y, Kotakoski J, Meyer J C, Peterlik H, Wanko M, Cahangirov S, Rubio A, Lapin Z J, Novotny L, Ayala P and Pichler T 2016 Nat. Mater. 15 634
[15] Shi L, Rohringer P, Wanko M, Rubio A, Waß erroth S, Reich S, Cambré S, Wenseleers W, Ayala P and Pichler T 2017 Phys. Rev. Mater. 1 075601
[16] Andrade N F, Aguiar A L, Kim Y A, Endo M, Freire P T C, Brunetto G, Galvao D S, Dresselhaus M S and Filho A G S 2015 J. Phys. Chem. C 119 10669
[17] Andrade N, Vasconcelos T, Gouvea C, Archanjo B, Achete C, Kim Y, Endo M, Fantini C, Dresselhaus M and Filho A S 2015 Carbon 90 172
[18] Neves W, Alencar R, Ferreira R, Torres-Dias A, Andrade N, San-Miguel A, Kim Y, Endo M, Kim D, Muramatsu H, Aguiar A and Filho A S 2018 Carbon 133 446
[19] Zhang K, Zhang Y and Shi L 2020 Chin. Chem. Lett. 31 1746
[20] Heeg S, Shi L, Pichler T and Novotny L 2018 Carbon 139 581
[21] Tschannen C D, Gordeev G, Reich S, Shi L, Pichler T, Frimmer M, Novotny L and Heeg S 2020 Nano Lett. 20 6750
[22] Tschannen C D, Frimmer M, Gordeev G, Vasconcelos T L, Shi L, Pichler T, Reich S, Heeg S and Novotny L 2021 ACS Nano 15 12249
[23] Rohringer P, Shi L, Ayala P and Pichler T 2016 Adv. Funct. Mater. 26 4874
[24] Milani A, Tommasini M, Russo V, Bassi A L, Lucotti A, Cataldo F and Casari C S 2015 Beilstein J. Nanotechnology 6 480
[25] Reich S and Thomsen C 2004 Philos. Trans. Royal Soc. London Ser. A 362 2271
[26] Thomsen C and Reich S 2006 Topics in Applied Physics (Berlin, Heidelberg: Springer) pp. 115-234
[27] Tian B and Zerbi G 1990 J. Chem. Phys. 92 3892
[28] Jorio A, Can çado L G, Heeg S, Novotny L and Hartschuh A 2019 Handbook of Carbon Nanomaterials (World Scientific) pp. 175-221
[29] Reich S, Thomsen C and Maultzsch J 2004 Carbon Nanotubes (Wiley-VCH) p. 224
[30] Martinati M, Wenseleers W, Shi L, Pratik S M, Rohringer P, Cui W, Pichler T, Coropceanu V, Brédas J L and Cambré S 2022 Carbon 189 276
[31] Duesberg G S, Loa I, Burghard M, Syassen K and Roth S 2000 Phys. Rev. Lett. 85 5436
[32] Tschannen C D, Frimmer M, Vasconcelos T L, Shi L, Pichler T and Novotny L 2022 Nano Lett. 22 3260
[33] Tschannen C D, Vasconcelos T L and Novotny L 2022 J. Chem. Phys. 156 044203
[34] Gordeev G, Wasserroth S, Li H, Flavel B and Reich S 2021 Nano Lett. 21 6732
[35] Shi L, Senga R, Suenaga K, Kataura H, Saito T, Paz A P, Rubio A, Ayala P and Pichler T 2021 Nano Lett. 21 1096
[36] Sharma K, Costa N L, Kim Y. A, Muramatsu H, Neto N M B, Martins L G, Kong J, Paschoal A R and Araujo P T 2020 Phys. Rev. Lett. 125 105501
[37] Costa N, Sharma K, Kim Y A, Choi G B, Endo M, Neto N M B, Paschoal A R and Araujo P T 2021 Phys. Rev. Lett. 126 125901
[38] Hu Y H 2011 J. Phys. Chem. C 115 1843
[39] Baughman R H 2006 Science 312 1009
[40] Castelli I E, Salvestrini P and Manini N 2012 Phys. Rev. B 85 214110
[41] Wanko M, Cahangirov S, Shi L, Rohringer P, Lapin Z J, Novotny L, Ayala P, Pichler T and Rubio A 2016 Phys. Rev. B 94 195422
[42] Kotrechko S, Mikhailovskij I, Mazilova T, Sadanov E, Timoshevskii A, Stetsenko N and Matviychuk Y 2015 Nanoscale Res. Lett. 10
[43] Rusznyáak Á, Zólyomi V, Kürti J, Yang S and Kertesz M 2005 Phys. Rev. B 72 155420
[44] Argaman U and Makov G 2022 Nanoscale Advances
[45] Tomohiro T, Soo K C, Takuya H and Ahm K Y 2018 Carbon Lett. 28 60
[46] Berdiyorov G, Eshonqulov G and Hamoudi H 2020 Comput. Mater. Sci. 183 109809
[47] Berdiyorov G R, Khalilov U, Hamoudi H and Neyts E C 2021 J. Comput. Electron. 20 848
[48] Artyukhov V I, Liu M and Yakobson B I 2014 Nano Lett. 14 4224
[49] Gao E, Li R and Baughman R H 2020 ACS Nano 14 17071
[50] Gao E, Zhou K, Shi L and Xu Z 2022 Phys. Rev. Lett. 128 219601
[51] Neves W, Ferreira R, Kim Y, Endo M, Choi G, Muramatsu H, Aguiar A, Alencar R and Filho A S 2022 Carbon 196 20
[52] Sun Y and Thompson S E 2007 J. Appl. Phys. 101 104503
[53] Sharma K, Costa N L, Kim Y A, Muramatsu H, Neto N M B, Martins L G, Kong J, Paschoal A R and Araujo P T 2022 Phys. Rev. Lett. 128 219602
[54] Yang X, Lv C, Yao Z, Yao M, Qin J, Li X, Shi L, Du M, Liu B and Shan C X 2020 Carbon 159 266
[55] Lucotti A, Tommasini M, Chalifoux W A, Fazzi D, Zerbi G and Tykwinski R R 2011 J. Raman Spectroscopy 43 95
[56] Alencar R S, Aguiar A L, Paschoal A R, Freire P T C, Kim Y A, Muramatsu H, Endo M, Terrones H, Terrones M, San-Miguel A, Dresselhaus M S and Filho A G S 2014 J. Phys. Chem. C 118 8153
[57] Silva-Santos S, Alencar R, Aguiar A, Kim Y, Muramatsu H, Endo M, Blanchard N, San-Miguel A and Filho A S 2019 Carbon 141 568
[58] Romanin D, Monacelli L, Bianco R, Errea I, Mauri F and Calandra M 2021 J. Phys. Chem. Lett. 12 10339
[59] Liu X, Zhang G and Zhang Y W 2015 J. Phys. Chem. C 119 24156
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[3] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[4] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[5] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[6] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[7] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[8] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[9] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
[10] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[11] A review of arc-discharge method towards large-scale preparation of long linear carbon chains
Yi-Fan Zhang(张一帆). Chin. Phys. B, 2022, 31(12): 125201.
[12] On-surface synthesis of one-dimensional carbyne-like nanostructures with sp-carbon
Wenze Gao(高文泽), Chi Zhang(张弛), Zheng Zhou(周正), and Wei Xu(许维). Chin. Phys. B, 2022, 31(12): 128101.
[13] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[14] One-dimensional sp carbon: Synthesis, properties, and modifications
Chao-Fan Lv(吕超凡), Xi-Gui Yang(杨西贵), and Chong-Xin Shan(单崇新). Chin. Phys. B, 2022, 31(12): 128103.
[15] Pulsed laser ablation in liquid of sp-carbon chains: Status and recent advances
Pietro Marabotti, Sonia Peggiani, Alessandro Vidale, and Carlo Spartaco Casari. Chin. Phys. B, 2022, 31(12): 125202.
No Suggested Reading articles found!