Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 018102    DOI: 10.1088/1674-1056/26/1/018102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

High thermal stability of diamond-cBN-B4C-Si composites

Hong-Sheng Jia(贾洪声)1, Pin-Wen Zhu(朱品文)2, Hao Ye(叶灏)1, Bin Zuo(左斌)1, Yuan-Long E(鄂元龙)1, Shi-Chong Xu(徐仕翀)1, Ji Li(李季)1, Hai-Bo Li(李海波)1, Xiao-Peng Jia(贾晓鹏)2, Hong-An Ma(马红安)2
1. Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping 136000, China;
2. State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Abstract  Improving the thermal stability of diamond and other superhard materials has great significance in various applications. Here, we report the synthesis and characterization of bulk diamond-cBN-B4C-Si composites sintered at high pressure and high temperature (HPHT, 5.2 GPa, 1620-1680 K for 3-5 min). The results show that the diamond, cBN, B4C, BxSiC, SiO2 and amorphous carbon or a little surplus Si are present in the sintered samples. The onset oxidation temperature of 1673 K in the as-synthesized sample is much higher than that of diamond, cBN, and B4C. The high thermal stability is ascribed to the covalent bonds of B-C, C-N, and the solid-solution of BxSiC formed during the sintering process. The results obtained in this work may be useful in preparing superhard materials with high thermal stability.
Keywords:  high pressure and high temperature      diamond-cBN-B4C-Si      composites      high thermal stability  
Received:  22 August 2016      Revised:  30 September 2016      Accepted manuscript online: 
PACS:  81.05.uj (Diamond/nanocarbon composites)  
  81.20.Ev (Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation)  
  81.70.Pg (Thermal analysis, differential thermal analysis (DTA), differential thermogravimetric analysis)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51301075) and the Project of Development and Reform Commission of Jilin Province, China (Grant No. 2014Y136).
Corresponding Authors:  Pin-Wen Zhu, Hai-Bo Li     E-mail:  zhupw@jlu.edu.cn;lihaibo@jlnu.edu.cn

Cite this article: 

Hong-Sheng Jia(贾洪声), Pin-Wen Zhu(朱品文), Hao Ye(叶灏), Bin Zuo(左斌), Yuan-Long E(鄂元龙), Shi-Chong Xu(徐仕翀), Ji Li(李季), Hai-Bo Li(李海波), Xiao-Peng Jia(贾晓鹏), Hong-An Ma(马红安) High thermal stability of diamond-cBN-B4C-Si composites 2017 Chin. Phys. B 26 018102

[1] Bovenkerk H P, Bundy F P, Hall H T, Strong H M and Wentorf R H 1959 Nature 184 1094
[2] Altukhov A A, Afanas'ev M S, Kvaskov V B, Lyubchenko V E, Mityagin Y A, Murav'ev E N, Pomortsev L A, Potapov V A and Spitsyn B V 2004 Inorg. Mater. 40 50
[3] Koizumi S, Watanabe K, Hasegawa M and Kanda H 2001 Science 292 1899
[4] Ekimov E A, Sidorov V A, Bauer E D, Mel'nik N N, Curro N J, Thompson J D and Stishov S M 2004 Nature 428 542
[5] Tillmann W 2000 Int. J. Refract. Met. Hard Mater. 8 301
[6] Tian Y, Xu B and Zhao Z 2012 Int. J. Refract. Met. Hard Mater. 33 93
[7] Xu B and Tian Y 2015 Sci. China-Mater. 58 132
[8] Wang P, He D W, Wang L P, Kou Z L, Li Y, Lun X, Hu Q W, Xu C, Li L, Wang Q M, Liu J and Zhao Y S 2015 Appl. Phys. Lett. 107 101901
[9] Solozhenko V L, Kurakevych O O and Godec Y L 2012 Adv. Mater. 24 1540
[10] Liu G D, Kou Z L, Yan X Z, Li L, Fang P, Wang Q M, Wang K X, Wang P, Liang L, Li Y, Li W T, Wang Y H, Yan B, Yang L and He D W 2015 Appl. Phys. Lett. 106 121901
[11] Badzian A R 1988 Appl. Phys. Lett. 53 2495
[12] Huang Q, Yu D L, Xu B, Hu W T, Ma Y M, Wang Y B, Zhao Z S, Wen B, He J L, Liu Z Y and Tian Y J 2014 Nature 510 250
[13] Tian Y J, Xu B, Yu D L, Ma Y M, Wang Y B, Jiang Y B, Hu W T, Tang C C, Gao Y F, Luo K, Zhao Z S, Wang L M, Wen B, He J L and Liu Z Y 2013 Nature 493 385
[14] Solozhenko V L, Andrault D, Fiquet G, Mezouar M and Rubie D C 2001 Appl. Phys. Lett. 78 1385
[15] Xu C, He D W, Wang H K, Wang W D, Tang M J and Wang P 2014 Chin. Sci. Bull. 59 5251
[16] Tang M J, He D W, Wang W D, Wang H K, Xu C, Li F J and Guan J W 2012 Scripta Mater. 66 781
[17] Luo X G, Zhou X F, Liu Z Y, He J L, Xu B, Yu D L, Wang H T and Tian Y J 2008 J. Phys. Chem. C 112 9516
[18] Dubrovinskaia N, Solozhenko V L, Miyajima N, Dmitriev V, Kurakevych O O and Dubrovinsky L 2007 Appl. Phys. Lett. 90 101912
[19] Sumiya H, Uesaka S and Satoh S 2000 J. Mater. Sci. 35 1181
[20] Qian J, Voronin G, Zerda T W, He D and Zhao Y 2002 J. Mater. Res. 17 2153
[21] Qian J, He D, Daemen L and Zhao Y 2003 J. Mater. Res. 18 1173
[22] Cui H Z, Liu W, Cao L L, Song Q, Tian J, Teng F L and Wang J 2015 J Euro. Cera. Soci. 35 3381
[23] Dub S N and Petrusha I A 2006 High Pressure Res. 26 71
[24] Irifune T, Kurio A, Sakamoto S, Inoue T and Sumiya H 2003 Nature 421 599
[25] Zhao Y C and Wang M Z 2008 J. Mater. Process. Tech. 198 134
[26] Kaner R B, Gilman J J and Tolbert S H 2005 Science 308 1268
[27] Li Y, Zhou Z X, Guan X M, Li S S, Wang Y, Jia X P and Ma H A 2016 Chin. Phys. Lett. 33 28101
[28] Li W S, Zhang J, Dong H F, Zhu K, Wang S C, Liu Y and Li Y M 2013 Chin. Phys. B 22 018102
[29] Obraztsov A N, Timofeyev M A, Guseva M B, Babaev V G, Valiulova Z K and Babina V M 1995 Diam. Relat. Mater. 4 968
[30] Prawer S and Nemanieh R J 2004 Phil. Trans. R. Soc. Lond. A 362 2537
[31] Liu X B, Jia X P, Zhang Z F, Zhao M, Guo W, Huang G F and Ma H A 2011 Cryst. Growth Des. 11 1006
[32] Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang Z F, Storr K, Balicas L, Liu F and Ajayan P M 2010 Nat. Mater. 9 430
[33] Watanabe M O, Itoh S, Mizushima K and Sasaki T 1996 Appl. Phys. Lett. 68 2962
[34] Oswald S and Wirth H 1999 Surf. Interface Anal. 27 136
[35] Dong L L, Wang Y Y, Tong X L, Jin G Q and Guo X Y 2014 Acta. Phys. -Chim. Sin. 30 135
[36] Wang H K, He D W, Xu C, Tang M J, Li Y, Dong H N, Meng C M, Wang Z G and Zhu W J 2013 J. Appl. Phys. 113 043505
[1] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[2] In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
Qingze Li(李青泽), Xiping Chen(陈喜平), Lei Xie(谢雷), Tiexin Han(韩铁鑫), Jiacheng Sun(孙嘉程), and Leiming Fang(房雷鸣). Chin. Phys. B, 2022, 31(6): 060702.
[3] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[4] Enhancing the thermoelectric performance through the mutual interaction between conjugated polyelectrolytes and single-walled carbon nanotubes
Shuxun Wan(万树勋), Zhongming Chen(陈忠明), Liping Hao(郝丽苹), Shichao Wang(王世超), Benzhang Li(李本章), Xiao Li(黎潇), Chengjun Pan(潘成军), and Lei Wang(王雷). Chin. Phys. B, 2022, 31(2): 028104.
[5] Hysteresis loss reduction in self-bias FeSi/SrFe12O19 soft magnetic composites
Shuangjiu Feng(冯双久), Jiangli Ni(倪江利), Feng Hu(胡锋), Xucai Kan(阚绪材), Qingrong Lv(吕庆荣), and Xiansong Liu(刘先松). Chin. Phys. B, 2022, 31(2): 027503.
[6] Structural, magnetic, and dielectric properties of Ni-Zn ferrite and Bi2O3 nanocomposites prepared by the sol-gel method
Jinmiao Han(韩晋苗), Li Sun(孙礼), Ensi Cao(曹恩思), Wentao Hao(郝文涛), Yongjia Zhang(张雍家), and Lin Ju(鞠林). Chin. Phys. B, 2021, 30(9): 096102.
[7] Third-order nonlinear optical properties of graphene composites: A review
Meng Shang(尚萌), Pei-Ling Li(李培玲), Yu-Hua Wang(王玉华), and Jing-Wei Luo(罗经纬). Chin. Phys. B, 2021, 30(8): 080703.
[8] Effect of Mo doping on phase change performance of Sb2Te3
Wan-Liang Liu(刘万良), Ying Chen(陈莹), Tao Li(李涛), Zhi-Tang Song(宋志棠), and Liang-Cai Wu(吴良才). Chin. Phys. B, 2021, 30(8): 086801.
[9] Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility
Xin-Yuan Miao(苗辛原), Hong-An Ma(马红安), Zhuang-Fei Zhang(张壮飞), Liang-Chao Chen(陈良超), Li-Juan Zhou(周丽娟), Min-Si Li(李敏斯), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(6): 068102.
[10] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
[11] Theoretical study of reactive melt infiltration to fabricate Co-Si/C composites
Saqib Shahzad, Khurram Iqbal, and Zaheer Uddin. Chin. Phys. B, 2021, 30(11): 116102.
[12] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[13] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[14] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[15] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
No Suggested Reading articles found!