|
|
Achieving ultracold Bose-Fermi mixture of 87Rb and 40K with dual dark magnetic-optical-trap |
Jie Miao(苗杰)1,2, Guoqi Bian(边国旗)1,2, Biao Shan(单标)1,2, Liangchao Chen(陈良超)1,2, Zengming Meng(孟增明)1,2, Pengjun Wang(王鹏军)1,2, Lianghui Huang(黄良辉)1,2,†, and Jing Zhang(张靖)1,2,‡ |
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-electronics, Shanxi University, Taiyuan 030006, China; 2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China |
|
|
Abstract We demonstrate that dual dark magnetic-optical-traps (MOTs) have great importance in the two-species 87Rb and 40K mixture compared with dual bright MOTs. The dark MOT has a little improvement in the trapping of single-species 87Rb or 40K gases compared with bright MOT. For the case of loading two-species 87Rb and 40K simultaneously, the improvement of 40K in the dual dark MOTs is mainly from the reduction of light-assisted collision losses. The dual dark MOTs employ a pair of conical lenses to produce the hollow beam for repump laser with high efficiency. The number and density of 87Rb and 40K atoms after evaporative cooling in the hybrid magnetic trap with dark MOT loading are compared with those in bright MOT. The atoms with large number and high density make it easier to realize the quantum degenerate of Bose-Fermi mixture.
|
Received: 21 January 2022
Revised: 21 February 2022
Accepted manuscript online: 25 February 2022
|
PACS:
|
03.75.Ss
|
(Degenerate Fermi gases)
|
|
37.10.De
|
(Atom cooling methods)
|
|
34.50.Cx
|
(Elastic; ultracold collisions)
|
|
67.85.Pq
|
(Mixtures of Bose and Fermi gases)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12034011, 92065108, 11974224, 12022406, and 12004229), the National Key Research and Development Program of China (Grant No. 2018YFA0307601), the Fund for Shanxi 1331 Project Key Subjects Construction, and the Program of Youth Sanjin Scholar. |
Corresponding Authors:
Lianghui Huang, Jing Zhang
E-mail: huanglh06@126.com;jzhang74@yahoo.com, jzhang74@sxu.edu.cn
|
Cite this article:
Jie Miao(苗杰), Guoqi Bian(边国旗), Biao Shan(单标), Liangchao Chen(陈良超), Zengming Meng(孟增明), Pengjun Wang(王鹏军), Lianghui Huang(黄良辉), and Jing Zhang(张靖) Achieving ultracold Bose-Fermi mixture of 87Rb and 40K with dual dark magnetic-optical-trap 2022 Chin. Phys. B 31 080306
|
[1] Ludlow A D, Boyd M M, Ye J, Peik E and Schmidt P O 2015 Rev. Mod. Phys. 87 637 [2] Cronin A D, Schmiedmayer J and Pritchard D E 2009 Rev. Mod. Phys. 81 1051 [3] Nath D, Easwaran R K, Rajalakshmi G and Unnikrishnan C S 2013 Phys. Rev. A 88 053407 [4] Lvovsky A I, Sanders B C and Tittel W 2009 Nat. Photon. 3 706 [5] Hu J Z, Urvoy A, Vendeiro Z, Crépel V, Chen W L and Vuletić V 2017 Science 358 1078 [6] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885 [7] Bloch I, Dalibard J and Sylvain 2012 Nat. Phys. 8 267 [8] Raab E L, Prentiss M, Cable A, Chu S and Pritchard D E 1987 Phys. Rev. Lett. 59 2631 [9] Davis K B, Mewes M, Joffe M A, Andrews M R and Ketterle W 1995 Phys. Rev. Lett. 74 5202 [10] Hess Harald F 1986 Phys. Rev. B 34 3476 [11] Davis K, Mewes M O and Ketterle W 1995 Appl. Phys. B 60 155 [12] Xiong D Z, Wang P J and Fu Z K, Chai S J and Zhang J 2010 Chin. Opt. Lett. 8 627 [13] Norcia M A, Cline J R, Bartolotta J P, Holland M J and Thompson J K 2018 New J. Phys. 20 023021 [14] Bruce G D, Haller E, Peaudecerf B, Cotta D A, Andia M, Wu S, Johnson M Y, Lovett B W and Kuhr S 2017 J. Phys. B 50 095002 [15] Lee H J, Adams C S, Kasevich M and Chu S 1996 Phys. Rev. Lett. 76 2658 [16] Kerman A J, Vuletić V, Chin C and Chu S 1986 Phys. Rev. B 34 3476 [17] Urvoy A, Vendeiro Z, Ramette J, Adiyatullin A and Vuletić V 2019 Phys. Rev. Lett. 122 203202 [18] Solano P, Duan Y H, Chen Y T, Rudelis A, Chin C and Vladan V 2019 Phys. Rev. Lett. 123 173401 [19] Anderson M H, Petrich W, Ensher J R and Cornell E A 1994 Phys. Rev. A 50 R3597 [20] Coslovsky J, Afek G, Mil A, Almog I and Davidson N 2017 Phys. Rev. A 96 032713 [21] Ketterle W, Davis K B, Joffe M A, Martin A and Pritchard D E 1993 Phys. Rev. Lett. 70 2253 [22] Wei D, Xiong D Z, Chen H X and Zhang J 2007 Acta Sinica Quant. Opt. 46 56 [23] McCarron D J, King S A and Cornish S L 2008 Meas Sci. Technol. 19 105601 [24] Zhang J, Wei D, Xie C D and Peng K C 2003 Opt. Express 11 1338 [25] Lang R 1982 IEEE J Quant. Electron. 18 976 [26] Angelis M D, Cacciapuoti L, Pierattini G and Tino G M 2003 Opt. Lasers Eng. 39 283 [27] Mishra S R, Tiwari S, Ram S and Mehendale S 2007 Opt. Eng. 46 084002 [28] Pierre-André B and Marc R 1978 Appl. Opt. 17 1080 [29] Cai Y J, Lu X H and Lin Q 2003 Opt. Lett. 28 1084 [30] Devlin J A and Tarbutt M R 2016 New J. Phys. 18 123017 [31] Bloch I, Greiner M, Mandel O, Hänsch T W and Esslinger T 2001 Phys. Rev. A 64 021402 [32] Ferlaino F, D'Errico C, Roati G, Zaccanti M, Inguscio M, Modugno G and Simoni A 2006 Phys. Rev. A 73 040702 [33] Mancini M W, Caires A R, Telles G D, Bagnato V S and Marcassa L G 2004 Eur. Phys. J. D 30 105 [34] Marcassa L G, Telles G D, Muniz S R and Bagnato V S 2000 Phys. Rev. A 63 013413 [35] Chai S J, Wang P J, Fu Z K, Huang L H and Zhang J 2012 Acta Sinica Quant. Opt. 18 171 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|