Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 018702    DOI: 10.1088/1674-1056/ac6eea
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam

Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞)
School of Physics;DUT-BSU Joint Institute, Dalian University of Technology, Dalian 116024, China
Abstract  Owing to the good adjustability and the strong near-field enhancement, surface plasmons are widely used in optical force trap, thus the optical force trap can achieve excellent performance. Here, we use the Laguerre-Gaussian beam and a plasmonic gold ring to separate enantiomers by the chiral optical force. Along with the radial optical force that traps the particles, there is also a chirality-sign-sensitive lateral force arising from the optical spin angular momentum, which is caused by the interaction between optical orbit angular momentum and gold ring structure. By selecting a specific incident wavelength, the strong angular scattering and non-chiral related azimuthal optical force can be suppressed. Thus the chiral related azimuthal optical force can induce an opposite orbital rotation of the trapped particles with chirality of different sign near the gold ring. This work proposes an effective approach for catchingand separating chiral enantiomers.
Keywords:  lateral optical force      chiral force      chiral sorting      surface plasmon  
Received:  01 April 2022      Revised:  28 April 2022      Accepted manuscript online:  12 May 2022
PACS:  87.80.Cc (Optical trapping)  
  71.45.Gm (Exchange, correlation, dielectric and magnetic response functions, plasmons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12074054) and the Fundamental Research Funds for the Central Universities, China (Grant No. DUT21LK06).
Corresponding Authors:  Yu-Rui Fang     E-mail:  yrfang@dlut.edu.cn

Cite this article: 

Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞) Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam 2023 Chin. Phys. B 32 018702

[1] Ashkin A 1970 Phys. Rev. Lett. 24 156
[2] Chen J, Ng J, Lin Z F and Chan C T 2011 Nat. Photon. 5 531
[3] Xin H, Li Y, Liu Y C, Zhang Y, Xiao Y F and Li B 2020 Adv. Mater. 32 2001
[4] Zhou J H, Tao R Z, Hu Z B, Zhong M C, Wang Z Q, Cai J and Li Y M 2009 Chin. Phys. Lett. 26 068701
[5] Spesyvtseva S E S and Dholakia K 2016 ACS Photon. 3 719
[6] Svoboda K and Block S M 1994 Opt. Lett. 19 930
[7] Hansen P M, Bhatia V K, Harrit N and Oddershede L 2005 Nano Lett. 5 1937
[8] Bosanac L, Aabo T, Bendix P M and Oddershede L B 2008 Nano Lett. 8 1486
[9] Li Z, Zhang S, Tong L, Wang P, Dong B and Xu H 2014 ACS Nano 8 701
[10] Liu Z H, Lei J J, Zhang Y, Zhang Y X, Yang X H, Zhang J Z, Yang Y and Yuan L B 2018 Chin. Phys. B 27 054209
[11] Yang A H, Moore S D, Schmidt B S, Klug M, Lipson M and Erickson D 2009 Nature 457 71
[12] Lin S Y and Crozier K B 2012 Opt. Express 20 3367
[13] Zhu T, Novitsky A, Cao Y, Mahdy M R C, Wang L, Sun F, Jiang Z and Ding W 2017 Appl. Phys. Lett. 111 061105
[14] Chen Y F, Serey X, Sarkar R, Chen P and Erickson D 2012 Nano Lett. 12 1633
[15] Min C, Shen Z, Shen J, Zhang Y, Fang H, Yuan G, Du L, Zhu S, Lei T and Yuan X 2013 Nat. Commun. 4 2891
[16] Zhang Y, Shi W, Shen Z, Man Z, Min C, Shen J, Zhu S, Urbach H P and Yuan X 2015 Sci. Rep. 5 15446
[17] Zerrouki D, Baudry J, Pine D, Chaikin P and Bibette J 2008 Nature 455 380
[18] Mu X and Sun M 2020 Mater. Today Physics 14 100222
[19] Mu X J, Hu L, Cheng Y Q, Fang Y R and Sun M T 2021 Nanosale 13 581
[20] Marston P L 2007 J. Acoust Soc. Am. 122 3162
[21] Kajorndejnukul V, Ding W Q, Sukhov S, Qiu C W and Dogariu A 2013 Nat. Photon. 7 787
[22] Wang S B and Chan C T 2014 Nat. Commun. 5 3307
[23] Chen H, Jiang Y, Wang N, Lu W, Liu S and Lin Z 2015 Opt. Lett. 40 5530
[24] Rodriguez-Fortuno F J, Engheta N, Martinez A and Zayats A V 2015 Nat. Commun. 6 8799
[25] Li M, Yan S, Zhang Y, Liang Y, Zhang P and Yao B 2019 Phys. Rev. A 99 033825
[26] Allen L, Beijersbergen M W, Spreeuw R J and Woerdman J P 1992 Phys. Rev. A 45 8185
[27] Guo Y, Zhu G, Bian W, Dong B and Fang Y 2020 Phys. Rev. A 102 033525
[28] Mansuripur M 2013 Nat. Photon. 7 765
[29] Lindell I, Sihvola A, Tretyakov S and Viitanen A J 1994 Electromagnetic waves in chiral and bi-isotropic media (Artech House) ISBN: 9780890066843
[30] Lakhtakia A, Varadan V K and Varadan V V 1989 Time-harmonic electromagnetic fields in chiral media, Vol. 335 (Springer)
[31] Bohren C F and Huffman D R 1998 Absorption and scattering of light by small particles (John Wiley & Sons)
[32] Lakhtakia A, Varadan V V and Varadan V K 1988 JOSA A 5 175
[33] Barron L D 2009 Molecular light scattering and optical activity (Cambridge University Press)
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[5] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[6] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[7] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[8] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[9] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[10] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[11] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[12] Ultra-wideband surface plasmonic bandpass filter with extremely wide upper-band rejection
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Qi-Ming Yu(余奇明), Ling-Ling Wang(王玲玲), Kun Liao(廖昆), and Jian Lou(娄健). Chin. Phys. B, 2022, 31(11): 114101.
[13] Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction
Jian-Mei Li(李健梅), Dong Hao(郝东), Li-Huan Sun(孙丽欢), Xiang-Qian Tang(唐向前), Yang An(安旸), Xin-Yan Shan(单欣岩), and Xing-Hua Lu(陆兴华). Chin. Phys. B, 2022, 31(11): 116801.
[14] Enhanced and tunable circular dichroism in the visible waveband by coupling of the waveguide mode and local surface plasmon resonances in double-layer asymmetric metal grating
Liu-Li Wang(王刘丽), Yang Gu(顾阳), Yi-Jing Chen(陈怡静), Ya-Xian Ni(倪亚贤), and Wen Dong(董雯). Chin. Phys. B, 2022, 31(11): 118103.
[15] Improvement of femtosecond SPPs imaging by two-color laser photoemission electron microscopy
Chun-Lai Fu(付春来), Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Xiao-Wei Song(宋晓伟), Peng Lang(郎鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107103.
No Suggested Reading articles found!