Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 086101    DOI: 10.1088/1674-1056/ac5981
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Substitutions of vertex configuration of Ammann-Beenker tiling in framework of Ammann lines

Jia-Rong Ye(叶家容), Wei-Shen Huang(黄伟深), and Xiu-Jun Fu(傅秀军)
School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
Abstract  The Ammann-Beenker tiling is a typical model for two-dimensional octagonal quasicrystals. The geometric properties of local configurations are the key to understanding its formation mechanism. We study the configuration correlations in the framework of Ammann lines, giving an in-depth inspection of this eightfold symmetric structure. When both the vertex type and the orientation are taken into account, strict confinements of neighboring vertices are found. These correlations reveal the structural properties of the quasilattice and also provide substitution rules of vertex along an Ammann line.
Keywords:  quasicrystals      Ammann-Beenker tiling      Ammann lines      substitution rules  
Received:  27 December 2021      Revised:  22 February 2022      Accepted manuscript online:  02 March 2022
PACS:  61.44.Br (Quasicrystals)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11674102).
Corresponding Authors:  Xiu-Jun Fu     E-mail:  phxjfu@scut.edu.cn

Cite this article: 

Jia-Rong Ye(叶家容), Wei-Shen Huang(黄伟深), and Xiu-Jun Fu(傅秀军) Substitutions of vertex configuration of Ammann-Beenker tiling in framework of Ammann lines 2022 Chin. Phys. B 31 086101

[1] Shechtman D, Blech I, Gratias D and Cahn J W 1984 Phys. Rev. Lett. 53 1951
[2] Liu J Q and Bian X B 2021 Phys. Rev. Lett. 127 213901
[3] Jin W T, Song M, Hu W C, Xue Y L and Gao Y M 2021 Opt. Commun. 500 127329
[4] Qiao Y F, Hou G L and Chen A 2021 Appl. Math. Comput. 400 126043
[5] Feng X, Fan X Y, Li Y, Zhang H, Zhang L L and Gao Y 2021 Eur. J. Mech. A. Solids 90 104365
[6] Beenker F P M 1982 Algebraic theory of non-periodic tilings by two simple building blocks:a square and a rhombus. (Eindhoven Technical University:TH-Report 82-WSK-04)
[7] Socolar J E S 1989 Phys. Rev. B 39 10519
[8] Ammann R, Grünbaum B and Shephard G C 1992 Discrete Comput. Geom. 8 1
[9] Shutov A and Maleev A 2019 Acta Cryst. A-Fund. Adv. 75 746
[10] Cai C, Liao L G and Fu X J 2019 Phys. Lett. A 383 2213
[11] Zhang H M, Cai C and Fu X J 2018 Chin. Phys. Lett. 35 066101
[12] Hua C B, Liu Z R, Peng T, Chen R, Xu D H and Zhou B 2021 Phys. Rev. B 104 155304
[13] Grimm U and Romer R A 2021 Phys. Rev. B 104 L060201
[14] Oktel M 2021 Phys. Rev. B 104 014204
[15] Varjas D, Lau A, Poyhonen K, Akhmerov A R, Pikulin D I and Fulga I C 2019 Phys. Rev. Lett. 123 196401
[16] Huang H Q and Liu F 2019 Phys. Rev. B 100 085119
[17] Huang H Q, Wu Y S and Liu F 2020 Phys. Rev. B 101 041103
[18] Huang H Q, Fan J H, Li D X and Liu F 2021 Nano Lett. 21 7056
[19] Fan J H and Huang H Q 2022 Front Phys. 17 13203
[20] Fu X J, Liu Y Y, Zhou P Q and Sritrakool W 1997 Phys. Rev. B 55 2882
[21] Onoda G Y, Steinhardt P J, Divincenzo D P and Socolar 1988 Phys. Rev. Lett. 60 2653
[1] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
[2] Anti-plane problem of nano-cracks emanating from a regular hexagonal nano-hole in one-dimensional hexagonal piezoelectric quasicrystals
Dongsheng Yang(杨东升) and Guanting Liu(刘官厅)†. Chin. Phys. B, 2020, 29(10): 104601.
[3] Interaction between infinitely many dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal
Guan-Ting Liu(刘官厅), Li-Ying Yang(杨丽英). Chin. Phys. B, 2017, 26(9): 094601.
[4] The interaction between a screw dislocation and a wedge-shaped crack in one-dimensional hexagonal piezoelectric quasicrystals
Li-Juan Jiang(姜丽娟), Guan-Ting Liu(刘官厅). Chin. Phys. B, 2017, 26(4): 044601.
[5] Finite size specimens with cracks of icosahedral Al–Pd–Mn quasicrystals
Yang Lian-Zhi (杨连枝), Ricoeur Andreas, He Fan-Min (何蕃民), Gao Yang (高阳). Chin. Phys. B, 2014, 23(5): 056102.
[6] Icosahedral quasicrystals solids with an elliptic hole under uniform heat flow
Li Lian-He (李联和), Liu Guan-Ting (刘官厅). Chin. Phys. B, 2014, 23(5): 056101.
[7] A Dugdale–Barenblatt model for a strip with a semi-infinite crack embedded in decagonal quasicrystals
Li Wu (李梧), Xie Ling-Yun (解凌云). Chin. Phys. B, 2013, 22(3): 036201.
[8] Elliptic hole in octagonal quasicrystals
Li Lian-He (李联和). Chin. Phys. B, 2013, 22(1): 016102.
[9] Electronic and optical properties of CdS/CdZnS nanocrystals
A. John Peter, Chang Woo Lee. Chin. Phys. B, 2012, 21(8): 087302.
[10] The relation between the generalised Eshelby integral and the generalised BCS and DB modelsvspace1mm
Fan Tian-You (范天佑) and Fan Lei(范蕾). Chin. Phys. B, 2011, 20(3): 036102.
[11] Elastic analysis of an elliptic notch in quasicrystals of point group 10 subjected to shear loading
Li Lian-He(李联和). Chin. Phys. B, 2010, 19(4): 046101.
[12] Dynamic behaviour of the icosahedral Al--Pd--Mn quasicrystal with a Griffith crack
Wang Xiao-Fang(王晓芳), Fan Tian-You(范天佑), and Zhu Ai-Yu(祝爱玉). Chin. Phys. B, 2009, 18(2): 709-714.
[13] Group-theoretical method for physical property tensors of quasicrystals
Gong Ping(龚平), Hu Cheng-Zheng(胡承正), Zhou Xiang(周详), Wang Ai-Jun(王爱军), and Miao Ling(缪灵). Chin. Phys. B, 2006, 15(9): 2065-2079.
[14] PLANE ELASTICITY PROBLEM OF TWO-DIMENSIONAL OCTAGONAL QUASICRYSTALS AND CRACK PROBLEM
Zhou Wang-min (周旺民), Fan Tian-you (范天佑). Chin. Phys. B, 2001, 10(8): 743-747.
No Suggested Reading articles found!