Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 076103    DOI: 10.1088/1674-1056/ac5605
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Heterogeneous integration of GaSb layer on (100) Si substrate by ion-slicing technique

Ren-Jie Liu(刘仁杰)1,2,†, Jia-Jie Lin(林家杰)3,4,†,‡, Zheng-Hao Shen(沈正皓)4, Jia-Liang Sun(孙嘉良)4, Tian-Gui You(游天桂)4,§, Jin Li(李进)5, Min Liao(廖敏)1,2,¶, and Yi-Chun Zhou(周益春)1,2,‖
1 Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China;
2 Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China;
3 College of Information Science and Engineering, Jiaxing University, Jiaxing 314001, China;
4 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science(CAS), Shanghai 200050, China;
5 Beijing Semicore ZKX Electronics Equipment Co., Ltd, Beijing 100000, China
Abstract  Integration of the high-quality GaSb layer on an Si substrate is significant to improve the GaSb application in optoelectronic integration. In this work, a suitable ion implantation fluence of 5×1016-cm-2 H ions for GaSb layer transfer is confirmed. Combining the strain change and the defect evolution, the blistering and exfoliation processes of GaSb during annealing is revealed in detail. With the direct wafer bonding, the GaSb layer is successfully transferred onto a (100) Si substrate covered by 500-nm thickness thermal oxide SiO2 layer. After being annealed at 200 ℃, the GaSb layer shows high crystalline quality with only 77 arcsec for the full width at half maximum (FWHM) of the x-ray rocking curve (XRC).
Keywords:  ion-slicing technique      heterogeneous integration      GaSbOI  
Received:  15 December 2021      Revised:  22 January 2022      Accepted manuscript online:  17 February 2022
PACS:  61.72.-y (Defects and impurities in crystals; microstructure)  
  61.72.Cc (Kinetics of defect formation and annealing)  
  61.80.Jh (Ion radiation effects)  
  61.82.Fk (Semiconductors)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFE0131300), the National Natural Science Foundation of China (Grant Nos. U1732268, 61874128, 11622545, 61851406, 11705262, 61875220, and 61804157), the Frontier Science Key Program of Chinese Academy of Sciences (Grant Nos. QYZDYSSW-JSC032 and ZDBS-LY-JSC009), the Chinese-Austrian Cooperative Research and Development Project (Grant No. GJHZ201950), the Shanghai Science and Technology Innovation Action Plan Program, China (Grant No. 17511106202), the Program of Shanghai Academic Research Leader, China (Grant No. 19XD1404600), the Shanghai Youth Top Talent Program, Shanghai Sailing Program, China (Grant Nos. 19YF1456200 and 19YF1456400), the K. C. Wong Education Foundation, China (Grant No. GJTD-2019-11), and the NCBiR within the Polish-China (Grant No. WPC/130/NIR-Si/2018).
Corresponding Authors:  Jia-Jie Lin, Tian-Gui You, Min Liao, Yi-Chun Zhou     E-mail:  jjlin@mail.sim.ac.cn;t.you@mail.sim.ac.cn;mliao@xtu.edu.cn;zhouyc@xtu.edu.cn

Cite this article: 

Ren-Jie Liu(刘仁杰), Jia-Jie Lin(林家杰), Zheng-Hao Shen(沈正皓), Jia-Liang Sun(孙嘉良), Tian-Gui You(游天桂), Jin Li(李进), Min Liao(廖敏), and Yi-Chun Zhou(周益春) Heterogeneous integration of GaSb layer on (100) Si substrate by ion-slicing technique 2022 Chin. Phys. B 31 076103

[1] Dutta P S, Bhat H L and Kumar V 1997 J. Appl. Phys. 81 5821
[2] Aifer E H, Tischler J G, Warner J H, Vurgaftman I, Bewley W W, Meyer J R, Kim J C, Whitman L J, Canedy C L and Jackson E M 2006 Appl. Phys. Lett. 89 8
[3] Yang C A, Xie S W, Zhang Y, Shang J M, Huang S S, Yuan Y, Shao F H, Zhang Y, Xu Y Q and Niu Z C 2019 Appl. Phys. Lett. 114 021102
[4] Rio Calvo M, Monge Bartolomé L, Bahriz M, Boissier G, Cerutti L, Rodriguez J B and Tournié E 2020 Optica 7 263
[5] Mohseni H, Wojkowski J, Razeghi M, Brown G and Mitchel W 1999 IEEE J. Quantum Electron. 35 1041
[6] Fraas L M, Girard G R, Avery J E, Arau B A, Sundaram V S, Thompson A G and Gee J M 1989 J. Appl. Phys. 66 3866
[7] Memišević E, Svensson J, Hellenbrand M, Lind E and Wernersson L E 2016 IEEE Electron Dev. Lett. 37 549
[8] Bruel M 1995 Electron. Lett. 31 1201
[9] Personnic S, Bourdelle K K, Letertre F, Tauzin A, Cherkashin N, Claverie A, Fortunier R and Klocker H 2008 J. Appl. Phys. 103 023508
[10] Grisolia J, Ben Assayag G, Claverie A, Aspar B, Lagahe C and Laanab L 2000 Appl. Phys. Lett. 76 852
[11] Daghbouj N, Cherkashin N, Darras F X, Paillard V, Fnaiech M and Claverie A 2016 J. Appl. Phys. 119 135308
[12] Lin J, You T, Wang M, Huang K, Zhang S, Jia Q, Zhou M, Yu W, Zhou S, Wang X and Ou X 2018 Nanotechnology 29 504002
[13] Yi A, Zheng Y, Huang H, Lin J, Yan Y, You T, Huang K, Zhang S, Shen C, Zhou M, Huang W, Zhang J, Zhou S, Ou H and Ou X 2020 Opt. Mater. (Amst). 107 109990
[14] Shi H, Huang K, Mu F, You T, Ren Q, Lin J, Xu W, Jin T, Huang H, Yi A, Zhang S, Li Z, Zhou M, Wang J, Xu K and Ou X 2020 Semicond. Sci. Technol. 35 125004
[15] Xu W, Wang X, Wang Y, You T, Ou X, Han G, Hu H, Zhang S, Mu F, Suga T, Zhang Y and Hao Y 2019 IEEE International Electron Devices Meeting, 2019, pp. 12.5.1-12.5.4
[16] Yan Y, Huang K, Zhou H, Zhao X, Li W, Li Z, Yi A, Huang H, Lin J, Zhang S, Zhou M, Xie J, Zeng X, Liu R, Yu W, You T and Ou X 2019 ACS Appl. Electron. Mater. 1 1660
[17] Pathak R, Dadwal U, Kapoor A K, Vallet M, Claverie A and Singh R 2021 Mater. Sci. Semicond. Process. 134 105998
[18] Pathak R, Dadwal U and Singh R 2017 J. Phys. D:Appl. Phys. 50 285301
[19] Zheng Y, Moran P D, Guan Z F, Lau S S, Hansen D M, Kuech T F, Haynes T E, Hoechbauer T and Nastasi M 2000 J. Electron. Mater. 29 916
[20] Cherkashin N, Daghbouj N, Darras F X, Fnaiech M and Claverie A 2015 J. Appl. Phys. 118 245301
[21] Moulet C and Goorsky M S 2012 Ion Implantation p. 70
[22] Egeland G W, Valdez J A, Maloy S A, McClellan K J, Sickafus K E and Bond G M 2013 J. Nucl. Mater. 435 77
[23] Campos C E M and Pizani P S 2001 J. Appl. Phys. 89 3631
[1] Heterogeneous integration of InP HEMTs on quartz wafer using BCB bonding technology
Yan-Fu Wang(王彦富), Bo Wang(王博), Rui-Ze Feng(封瑞泽), Zhi-Hang Tong(童志航), Tong Liu(刘桐), Peng Ding(丁芃), Yong-Bo Su(苏永波), Jing-Tao Zhou(周静涛), Feng Yang(杨枫), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018502.
[2] Heterogeneous integration of GaAs pHEMT and Si CMOS on the same chip
Li-Shu Wu(吴立枢), Yan Zhao(赵岩), Hong-Chang Shen(沈宏昌) You-Tao Zhang(张有涛), Tang-Sheng Chen(陈堂胜). Chin. Phys. B, 2016, 25(6): 067306.
No Suggested Reading articles found!