Probing the improved stability for high nickel cathode via dual-element modification in lithium-ion
Fengling Chen(陈峰岭)1,2, Chaozhi Zeng(曾朝智)3, Chun Huang(黄淳)3,†, Jiannan Lin(林建楠)4, Yifan Chen(陈一帆)4, Binbin Dong(董彬彬)4, Chujun Yin(尹楚君)1,2, Siying Tian(田飔莹)1,2, Dapeng Sun(孙大鹏)1,2, Zhenyu Zhang(张振宇)4,‡, Hong Li(李泓)2,5,§, and Chaobo Li(李超波)1,2,¶
1 Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; 4 Beijing Welion New Energy Technology Co., Ltd, Beijing 102402, China; 5 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract One of the major hurdles of nickel-rich cathode materials for lithium-ion batteries is the low cycling stability, especially at high temperature and high voltage, originating from severe structural degradation, which makes this class of cathode less practical. Herein, we compared the effect of single and dual ions on electrochemical performance of high nickel (LiNi0.88Mn0.03Co0.09O2, NMC) cathode material in different temperatures and voltage ranges. The addition of a few amounts of tantalum (0.2 wt%) and boron (0.05 wt%) lead to improved electrochemical performance. The co-modified LiNi0.88Mn0.03Co0.09O2 displays an initial discharge capacity of 234.9 mAh/g at 0.1 C and retained 208 mAh/g at 1 C after 100 cycles at 45 ℃, which corresponds to a capacity retention of 88.5%, compared to the initial discharge capacity of 234.1 mAh/g and retained capacity of 200.5 mAh/g (85.6%). The enhanced capacity retention is attributed to the synergetic effect of foreign elements by acting as a surface structural stabilizer without sacrificing specific capacity.
Fund: Project supported by the Key Laboratory Fund (Grant No. 6142804200303) from Science and Technology on Microsystem Laboratory, the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences:Original Innovation Projects from 0 to 1 (Grant No. ZDBS-LY-JSC010), Beijing Municipal Science & Technology Commission (Grant No. Z191100004719001).
Corresponding Authors:
Chun Huang, Zhenyu Zhang, Hong Li, Chaobo Li
E-mail: huangchun@sari.ac.cn;zyzhang@solidstatelion.com;hli@iphy.ac.cn;lichaobo@ime.ac.cn
Cite this article:
Fengling Chen(陈峰岭), Chaozhi Zeng(曾朝智), Chun Huang(黄淳), Jiannan Lin(林建楠), Yifan Chen(陈一帆), Binbin Dong(董彬彬), Chujun Yin(尹楚君), Siying Tian(田飔莹), Dapeng Sun(孙大鹏), Zhenyu Zhang(张振宇), Hong Li(李泓), and Chaobo Li(李超波) Probing the improved stability for high nickel cathode via dual-element modification in lithium-ion 2022 Chin. Phys. B 31 078101
[1] Zhang H, Zhao H, Khan M A, Zou W, Xu J and Zhang L 2018 J. Mater. Chem. A6 20564 [2] Zhao Z, Xia K and Hou Y 2021 Chem. Soc. Rev.50 12702 [3] Chen H, Liu R and Wu Y 2021 Chem. Eng. J.407 126973 [4] Wang X, Wang B, Yang J, Ran Q, Zou J, Chen P, Li L, Wang L and Niu X 2021 Chin. Phys. B30 88201 [5] Zhang J, Li Q, Li Q, Yu X and Li H 2018 Chin. Phys. B27 88202 [6] Wang Y, Liu B, Zhou G, Nie K, Zhang J, Yu X and Li H 2019 Chin. Phys. B28 68202 [7] Shang T, Xiao D, Zhang Q, Wang X, Su D and Gu L 2021 Chin. Phys. B30 78202 [8] Manthiram A 2020 Nat. Commun.11 1550 [9] Choi J U, Voronina N, Sun Y K and Myung S T 2020 Adv. Energy Mater.10 2002027 [10] Eum D, Kim B, Kim S J, Park H, Wu J and Cho S P 2020 Nat. Mater.19 419 [11] Sathiya M, Abakumov A M, Foix D, Rousse G, Ramesha K and Saubanére M 2015 Nat. Mater.14 230 [12] Yabuuchi N 2020 Nat. Mater.19 372 [13] Zhang S S 2020 Energy Storage Mater.24 247 [14] Luo Y R 2012 CRC Handbook of Chemistry and Physics (America:Boca Raton) 89 pp. 65-97 [15] Amalraj S F, Raman R, Chakraborty A, Leifer N, Nanda R, Kunnikuruvan S, Kravchuk T, Grinblat J, Ezersky V, Sun R, Deepak F L, Erk C, Wu X, Maiti S, Hadar Sclar H, Goobes G, Major T D, Talianker M, Markovsky B and Aurbach D 2021 Energy Storage Mater.42 594 [16] Uzun D 2015 Solid State Ionics281 73 [17] Park K J, Jung H G, Kuo L Y, Kaghazchi P, Yoon C S and Sun Y K 2018 Adv. Energy Mater.8 1801202 [18] Kim U H, Park G T, Son B K, Nam G W, Liu J and Kuo L Y 2020 Nat. Energy5 860 [19] Shin Y, Kan W H, Aykol M, Papp J K, Mccloskey B D and Chen G 2018 Nat. Commun.9 4597 [20] Ryu H H, Park N Y, Yoon D R, Kim U H, Yoon C S and Sun Y K 2020 Adv. Energy Mater.10 2000495 [21] Zhang X, Zhang P, Zeng T, Yu Z, Qu X and Peng X 2021 ACS Appl. Energy Mater.4 8641 [22] Zou Y G, Mao H, Meng X H, Du Y H, Sheng H and Yu X 2021 Angew. Chem.133 26739 [23] Kim Y, Seong W M and Manthiram A 2021 Energy Storage Mater.34 250 [24] Zhong S W, Chen P and Yao W L 2015 ECS Electrochem. Lett.4 A45 [25] Liu Y, Yao W L, Lei C, Zhang Q, Zhong S W and Yan Z Q 2019 J. Electrochem. Soc.166 A1300 [26] Tang X, Zhou J, Bai M, Wu W, Li S and Ma Y 2019 J. Mater. Chem. A7 13364 [27] Tang X Y, Jia Q R, Yang L Y, Bai M, Wu W W, Wang Z Q, Gong M, Sa S P, Tao S Y, Sun M K and Ma Y 2020 Energy Storage Mater.33 239 [28] Ryu H H, Park N Y, Seo J H, Yu Y S, Sharma M and Mücke R 2020 Mater. Today36 73 [29] Zheng J, Yan P, Estevez L, Wang C and Zhang J G 2018 Nano Energy49 538 [30] Chang B, Gersten B L, Szewczyk S T and Adams J W 2007 Appl. Phys. A86 83 [31] Jamil S, Yu R, Wang Q, Fasehullah M, Huang Y and Yang Z 2020 J. Power Sources473 228597 [32] Moddeman W E, Burke A R, Bowling W C and Foose D S 1989 Surf. Interface Anal.14 224 [33] Shi J L, Xiao D D, Ge M, Yu X, Chu Y and Huang X 2018 Adv. Mater.30 1705575 [34] Abebe E B, Yang C C, Wu S H, Chien W C and Li Y J 2021 ACS Appl. Energy Mater.4 14295 [35] Liu Y, Fu N, Zhang G, Lu W, Zhou L and Huang H 2016 J. Mater. Chem. A4 15049 [36] Yonghyun C, Oh P and Cho J 2013 Nano lett.13 1145 [37] Yang S, Ren W and Chen J 2017 Ionics23 2969 [38] Liu D, Su Z and Wang L 2021 Ceram. Int.47 42 [39] Yu L, Tian Y, Xing Y, Hou C, Si Y and Lu H 2021 Ionics27 5021 [40] Huang X, Zhu W, Yao J, Bu L, Li X and Tian K 2020 J. Mater. Chem. A8 17429 [41] Liu Y, Zhu Y and Cui Y 2019 Nat. Energy4 540 [42] Xu C L, Xiang W, Wu Z G, Xu Y, Li Y and Wang Y 2019 ACS Appl. Mater. Interfaces11 16629 [43] Chen Z, Wang J, Huang J, Fu T, Sun G and Lai S 2017 J. Power Sources363 168 [44] Hu G, Li L, Lu Y, Cao Y, Peng Z and Xue Z 2020 J. Electrochem. Soc.167 140505 [45] Phillip N D, Ruther R E, Sang X, Wang Y, Unocic R R and Westover A S 2019 ACS Appl. Energy Mater.2 1405 [46] Yeh N H, Wang F M, Khotimah C, Wang X C, Lin Y W and Chang S C 2021 ACS Appl. Mater. Interfaces13 7355 [47] Loghavi M M, Mohammadi-Manesh H and Eqra R 2019 J. Electroanal. Chem.848 113326 [48] Wen B, Deng Z, Tsai P C, Lebens-Higgins Z W, Piper L F J and Ong S P 2020 Nat. Energy5 578 [49] Björklund E, Brandell D, Hahlin M, Edström K and Younesi R 2017 J. Electrochem. Soc.164 A3054 [50] Choi N S, Han J G, Ha S Y, Park I and Back C K 2015 Rsc Adv.5 2732 [51] Zheng J, Engelhard M H, Mei D, Jiao S, Polzin B J and Zhang J G 2017 Nat. Energy2 17012 [52] Deng T, Fan X, Cao L, Chen J, Hou S and Ji X 2019 Joule3 2550 [53] Xiong X H, Wang Z X, Yin X, Guo H J and Li X H 2013 Mater. Lett.110 4
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.