Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 070204    DOI: 10.1088/1674-1056/ac7449
Special Issue: TOPICAL REVIEW—Laser and plasma assisted synthesis of advanced nanomaterials in liquids
SPECIAL TOPIC—Laser and plasma assisted synthesis of advanced nanomaterials in liquids Prev   Next  

Experimental study on gas production and solution composition during the interaction of femtosecond laser pulse and liquid

Yichun Wang(王奕淳)1, Han Wu(吴寒)1,†, Wenkang Lu(陆文康)1, Meng Li(李萌)2, Ling Tao(陶凌)3, and Xiuquan Ma(马修泉)1,2
1 The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology(HUST), Wuhan 430074, China;
2 Guangdong Intelligent Robotics Institute, Dongguan 523808, China;
3 Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
Abstract  The process of ionizing normal saline induced by femtosecond laser is studied from the perspective of gas production rate and composition. When the repetition rate is less than 1000 Hz, each laser pulse independently generates ionization gas. At the same time, we discovered the inhibitory effect of meglumini diatrizoici on the ionization process and explained the reasons for this inhibition. Finally, the gas composition proved that the primary gas production mechanism of the femtosecond laser is the decomposition of water molecular, and the composition of the solution after the reaction proved the decomposition effect of the laser on meglumine.
Keywords:  femtosecond laser,ionization,gas production rate      meglumini diatrizoici  
Received:  05 November 2021      Revised:  23 May 2022      Accepted manuscript online:  29 May 2022
PACS:  02.30.Uu (Integral transforms)  
  02.30.Vv (Operational calculus)  
  06.20.Dk (Measurement and error theory)  
  06.60.-c (Laboratory procedures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 81927805) the Fundamental Research Funds for the Central Universities of HUST (Grant No. 2019kfyXKJC062), the Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2019B030302003), the Science and Technology Planning Project of Guangdong Province, China (Grant No. 2018B090944001), and China Postdoctoral Science Foundation (Grant No. 2018M632837).
Corresponding Authors:  Han Wu     E-mail:  hanwu@hust.edu.cn

Cite this article: 

Yichun Wang(王奕淳), Han Wu(吴寒), Wenkang Lu(陆文康), Meng Li(李萌), Ling Tao(陶凌), and Xiuquan Ma(马修泉) Experimental study on gas production and solution composition during the interaction of femtosecond laser pulse and liquid 2022 Chin. Phys. B 31 070204

[1] Dotter C T and Judkins M P 1964 Circulation 30 654
[2] Kitrell C, et al. 1985 Appl. Opt. 25 2280
[3] Strikwerda S, Bott-Silverman C, Ratliff N B, et al. 1988 Lasers Surg. Med. 8 66
[4] Heijer P, Dijk R B, Pentinga M L, Hillege H L and Lie K I 1994 J. Intervent. Cardiol. 7 525
[5] van Leeuwen T G, van Erven L, Meertens J H, Motamedi M, Post M J and Borst C 1992 J. Am. Coll. Cardiol. 19 1610
[6] Tan S, Wu J J, Huang Q, et al. 2019 Acta Phys. Sin. 68 057901 (in Chinese)
[7] Liu M N, Li M T, Yang H, et al. 2018 Chin. Phys. B 27 094212
[8] Alfred Vogel, Norbert Linz, Sebastian Freidank and Günther Paltauf. 2008 Phys. Rev. Lett. 100 038102
[9] Chen S, Zhang D, Wang C H, et al. 2019 Acta Phys. Sin. 68 074301 (in Chinese)
[10] Feng K Y and Wang C H 2019 Acta Phys. Sin. 68 244301 (in Chinese)
[11] Shen Z Z 2020 Chin. Phys. B 29 014304
[12] Sun J, Shen Z Z and Mo R Y 2019 Chin. Phys. B 28 014301
[13] Hanna Kierzkowska-Pawlak, Jacek Tyczkowski, Arkadiusz Jarota and Halina Abramczyk 2019 Appl. Energy 247 24
[14] Herzog A, Steinberg I and Ishaaya A A 2017 J. Biophoton. 10 1262
[15] Herzog A, Steinberg I, Gaisenberg E, Nomberg R and Ishaaya A A 2016 J. Sel. Top. Quantum 22 1
[16] Li H, Shi Z, Wang X W, Sui L Z, Li S Y and Jin M X 2017 Chem. Phys. Lett. 681 86
[17] Zhang K J, Liu L, Zeng Q W, et al. 2019 Acta Phys. Sin. 68 194207 (in Chinese)
[18] Wang Y L, Zhao B, Min C J, et al. 2020 Chin. Phys. B 29 027302
[19] Venugopalan V, Guerra A, Nahen K and Vogel A 2002 Phys. Rev. Lett. 88 078103
[20] Vogel A and Busch S 1996 J. Acoust. Soc. Am. 100 148
[21] Davis G S, Bott-Silverman C, Goormastic M, Gerrity R G, Kittrell C, Feld M and Kramer J R 1988 Lasers Surg. Med. 8 72
[22] Appelman Y E, Piek J J, Verhoofstad G G, Gijsbers G H and van Gemert M J 1996 Lasers Surg. Med. 18 197
[1] Optical wavelet-fractional squeezing combinatorial transform
Cui-Hong Lv(吕翠红), Ying Cai(蔡莹), Nan Jin(晋楠), and Nan Huang(黄楠). Chin. Phys. B, 2022, 31(2): 020303.
[2] Synchronization between a novel class of fractional-order and integer-order chaotic systems via sliding mode controller
Chen Di-Yi (陈帝伊), Zhang Run-Fan (张润凡), Ma Xiao-Yi (马孝义), Wang Juan (王娟). Chin. Phys. B, 2012, 21(12): 120507.
[3] No-chattering sliding mode control in a class of fractional-order chaotic systems
Chen Di-Yi(陈帝伊), Liu Yu-Xiao(刘玉晓), Ma Xiao-Yi(马孝义), and Zhang Run-Fan(张润凡) . Chin. Phys. B, 2011, 20(12): 120506.
[4] Two mutually conjugated tripartite entangled states and their fractional Fourier transformation kernel
LÜ Cui-Hong(吕翠红), Fan Hong-Yi(范洪义), and Jiang Nian-Quan(姜年权). Chin. Phys. B, 2010, 19(12): 120303.
[5] A hyperchaotic system stabilization via inverse optimal control and experimental research
Yang Ning-Ning(杨宁宁), Liu Chong-Xin(刘崇新), and Wu Chao-Jun(吴朝俊). Chin. Phys. B, 2010, 19(10): 100502.
[6] Relations between chirp transform and Fresnel diffraction, Wigner distribution function and a fast algorithm for chirp transform
Shi Peng(石鹏) , Cao Guo-Wei(曹国威), and Li Yong-Ping(李永平). Chin. Phys. B, 2010, 19(7): 074201.
[7] New transformation of Wigner operator in phase space quantum mechanics for the two-mode entangled case
Fan Hong-Yi (范洪义), Yuan Hong-Chun (袁洪春). Chin. Phys. B, 2010, 19(7): 070301.
[8] A complexity measure approach based on forbidden patterns and correlation degree
Wang Fu-Lai(王福来). Chin. Phys. B, 2010, 19(6): 060515.
[9] Generating one-, two-, three- and four-scroll attractors from a novel four-dimensional smooth autonomous chaotic system
Sara Dadras and Hamid Reza Momeni. Chin. Phys. B, 2010, 19(6): 060506.
[10] A method for extracting human gait series from accelerometer signals based on the ensemble empirical mode decomposition
Fu Mao-Jing(符懋敬), Zhuang Jian-Jun(庄建军), Hou Feng-Zhen(侯凤贞), Zhan Qing-Bo(展庆波),Shao Yi(邵毅), and Ning Xin-Bao(宁新宝). Chin. Phys. B, 2010, 19(5): 058701.
[11] Control and synchronization of second Julia sets
Zhang Yong-Ping(张永平), Sun Wei-Hua(孙伟华), and Liu Chang-An(刘长安). Chin. Phys. B, 2010, 19(5): 050512.
[12] New two-fold integration transformation for the Wigner operator in phase space quantum mechanics and its relation to operator ordering
Fan Hong-Yi(范洪义). Chin. Phys. B, 2010, 19(4): 040305.
[13] Chaos in the perturbed Korteweg-de Vries equation with nonlinear terms of higher order
Pan Wei-Zhen(潘伟珍), Song Xiang-Jiong(宋向炯), and Yu Jun(俞军). Chin. Phys. B, 2010, 19(3): 030203.
[14] The feedback control of fractional order unified chaotic system
Yang Jie(杨捷) and Qi Dong-Lian(齐冬莲) . Chin. Phys. B, 2010, 19(2): 020508.
[15] Novel uncertainty relations associated with fractional Fourier transform
Xu Guan-Lei(徐冠雷), Wang Xiao-Tong(王孝通), and Xu Xiao-Gang(徐晓刚) . Chin. Phys. B, 2010, 19(1): 014203.
No Suggested Reading articles found!