Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 097801    DOI: 10.1088/1674-1056/ac6b28
RAPID COMMUNICATION Prev   Next  

Measurement of CO, HCN, and NO productions in atmospheric reaction induced by femtosecond laser filament

Xiao-Dong Huang(黄晓东)1, Meng Zhang(张梦)1, Lun-Hua Deng(邓伦华)1,†, Shan-Biao Pang(庞山彪)1, Ke Liu(刘珂)1, and Huai-Liang Xu(徐淮良)1,2,3,‡
1 State Key Laboratory of Precision Spectroscopy, East China Normal University(ECNU), Shanghai 200062, China;
2 State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China;
3 Chinese Academy of Sciences Center for Excellence in Ultra-Intense Laser Science, Shanghai 201800, China
Abstract  It is proved that the chemical reaction induced by femtosecond laser filament in the atmosphere produces CO, HCN, and NO, and the production CO and HCN are observed for the first time. The concentrations of the products are measured by mid-infrared tunable laser absorption spectroscopy. In the reduced pressure air, the decomposition of CO2 is enhanced by vibration excitation induced by laser filament, resulting in the enhanced production of CO and HCN. At the same time, the CO and HCN generated from the atmosphere suffer rotation excitation induced by laser filament, enhancing their absorption spectra. It is found that NO, CO, and HCN accumulate to 134 ppm, 80 ppm, and 1.6 ppm in sealed air after sufficient reaction time. The atmospheric chemical reaction induced by laser filament opens the way to changing the air composition while maintaining environmental benefits.
Keywords:  femtosecond laser filament      atmospheric reaction      CO      HCN      NO  
Received:  07 March 2022      Revised:  21 April 2022      Accepted manuscript online:  28 April 2022
PACS:  78.47.-p (Spectroscopy of solid state dynamics)  
  82.53.-k (Femtochemistry)  
  78.30.-j (Infrared and Raman spectra)  
  82.33.Tb (Atmospheric chemistry)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 1625501 and 62027822) and the Research Funds of Happiness Flower ECNU, China (Grant No. 2021ST2110).
Corresponding Authors:  Lun-Hua Deng, Huai-Liang Xu     E-mail:  lhdeng@phy.ecnu.edu.cn;huailiang@jlu.edu.cn

Cite this article: 

Xiao-Dong Huang(黄晓东), Meng Zhang(张梦), Lun-Hua Deng(邓伦华), Shan-Biao Pang(庞山彪), Ke Liu(刘珂), and Huai-Liang Xu(徐淮良) Measurement of CO, HCN, and NO productions in atmospheric reaction induced by femtosecond laser filament 2022 Chin. Phys. B 31 097801

[1] Shumakova V, Schubert E, Balciunas T, Matthews M, Alisauskas S, Mongin D, PugzlysA, Kasparian J, Baltuska A and Wolf J P 2021 Optica 8 1256
[2] Schimmel G, Produit T, Mongin D, Kasparian J and Wolf J P 2018 Optica 5 1338
[3] Thul D, Bernath R, Bodnar N, Kerrigan H, Reyes D, Pena J, Roumayah P, Shah L, Maukonen D, Bradford J, Baudelet M, S. Fairchild R and Richardson M 2021 Opt. Lasers Eng. 140 106519
[4] Kasparian J, Rodriguez M, Mejean G, Yu J, Salmon E, Wille H, Bourayou R, Frey S andre, Y B, Mysyrowicz A, Sauerbrey R, Wolf J P and Woste L 2003 Science 301 61
[5] Wolf J P 2018 Rep. Prog. Phys. 81 026001
[6] Kasparian J, Rohwetter P, Woste L and Wolf J P 2012 J. Phys. D 45 293001
[7] Petit Y, Henin S, Kasparian J and Wolf J P 2010 Appl. Phys. Lett. 97 021108
[8] Camino A, Li S, Hao Z and Lin J 2015 Appl. Phys. Lett. 106 021105
[9] Lim R W J and Fahrenbach A C 2020 Pure Appl. Chem. 92 1971
[10] Kylian O, Leys C and Hrachova V 2001 Contrib. Plasma Phys. 41 407
[11] Kozak T and Bogaerts A 2014 Plasma Sources Sci. Technol. 23 045004
[12] Pietanza L D, Colonna G, D'Ammando G, Laricchiuta A and Capitelli M 2015 Plasma Sources Sci. Technol. 24 042002
[13] Snoeckx R, Heijkers S, Van Wesenbeeck K, Lenaerts S and Bogaerts A 2016 Energy Environ. Sci. 9 999
[14] Dagaut P, Glarborg P and Alzueta M U 2008 Prog. Energy Combust. Sci. 34 1
[15] Ferus M, Kubelik P, A Knizek, Pastorek A, Sutherland J and Civis S 2017 Sci. Rep. 7 6275
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Guide and control of thermal conduction with isotropic thermodynamic parameters based on a rotary-concentrating device
Mao Liu(刘帽)†, Quan Yan(严泉). Chin. Phys. B, 2023, 32(4): 044402.
[3] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[4] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[5] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[6] Lorentz quantum computer
Wenhao He(何文昊), Zhenduo Wang(王朕铎), and Biao Wu(吴飙). Chin. Phys. B, 2023, 32(4): 040304.
[7] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[8] Nonreciprocal negative refraction in a dense hot atomic medium
Hai Yi(易海), Hongjun Zhang(张红军), and Hui Sun(孙辉). Chin. Phys. B, 2023, 32(4): 044202.
[9] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[10] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[11] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[12] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[13] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[14] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[15] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
No Suggested Reading articles found!