Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 028202    DOI: 10.1088/1674-1056/25/2/028202
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

First principle study of LiXS2 (X = Ga, In) as cathode materials for Li ion batteries

Feng-Ya Rao(饶凤雅)1, Fang-Hua Ning(宁芳华)1, Li-Wei Jiang(蒋礼威)1, Xiang-Ming Zeng(曾祥明)2, Mu-Sheng Wu(吴木生)1, Bo Xu(徐波)1, Chu-Ying Ouyang(欧阳楚英)1
1. Department of Physics, Laboratory of Computational Materials Physics, Jiangxi Normal University, Nanchang 330022, China;
2. School of New Energy Science and Engineering, Xinyu University, Xinyu 338004, China
Abstract  From first principle calculations, we demonstrate that LiXS2 (X = Ga, In) compounds have potential applications as cathode materials for Li ion batteries. It is shown that Li can be extracted from the LiXS2 lattice with relatively small volume change and the XS4 tetrahedron structure framework remains stable upon delithiation. The theoretical capacity and average intercalation potential of the LiGaS2 (LiInS2) cathode are 190.4 (144.2) mAh/g and 3.50 V (3.53 V). The electronic structures of the LiXS2 are insulating with band gaps of 2.88 eV and 1.99 eV for X= Ga and In, respectively. However, Li vacancies, which are formed through delithiation, change the electronic structure substantially from insulating to metallic structure, indicating that the electrical conductivities of the LiXS2 compounds should be good during cycling. Li ion migration energy barriers are also calculated, and the results show that Li ion diffusions in the LiXS2 compounds can be as good as those in the currently widely used electrode materials.
Keywords:  lithium batteries      sulfide electrolyte      cathode materials      first principle calculations  
Received:  02 August 2015      Revised:  12 November 2015      Accepted manuscript online: 
PACS:  82.47.Aa (Lithium-ion batteries)  
  66.10.Ed (Ionic conduction)  
  71.23.-k (Electronic structure of disordered solids)  
Fund: Project supported by the National High Technology and Development Key Program, China (Grant No. 2015AA034201), the National Natural Science Foundation of China (Grant Nos. 11234013 and 11264014), the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20133ACB21010, 20142BAB212002, and 20132BAB212005), and the Foundation of Jiangxi Provincial Education Committee, China (Grant Nos. GJJ14254 and KJLD14024).
Corresponding Authors:  Chu-Ying Ouyang     E-mail:  cyouyang@jxnu.edu.cn

Cite this article: 

Feng-Ya Rao(饶凤雅), Fang-Hua Ning(宁芳华), Li-Wei Jiang(蒋礼威), Xiang-Ming Zeng(曾祥明), Mu-Sheng Wu(吴木生), Bo Xu(徐波), Chu-Ying Ouyang(欧阳楚英) First principle study of LiXS2 (X = Ga, In) as cathode materials for Li ion batteries 2016 Chin. Phys. B 25 028202

[1] Goodenough J B and Kim Y S 2010 Chem. Mater. 22 587
[2] Tarascon J M and Armand M 2001 Nature 414 359
[3] Huang X J 2015 Physics 44 1 (in Chinese)
[4] Ouyang C Y, Wang D Y, Shi S Q, Wang Z X, Li H, Huang X J and Chen L Q 2006 Chin. Phys. Lett. 23 61
[5] Wang Z P, Liu P and Wang L F 2013 Chin. Phys. B 22 088801
[6] Li J, Ru Q, Hu S J and Guo L Y 2014 Acta Phys. Sin. 63 168201 (in Chinese)
[7] Zhou X, Chen J, Gu L and Miao L 2015 Chin. Phys. Lett. 32 26102
[8] Huang W W, Zhu Z Q, Wang L J, Wang S W, Li H, Tao Z L, Shi J F, Guan L H and Chen J 2013 Angew. Chem. Int. Ed. 52 9162
[9] Tian J, Jin Y, Guan Y B, Su Y F, Bao L Y, Chen S and Wu F 2014 Chin. Sci. Bull. 59 1950
[10] Baek S W, Lee J M, Kim T Y, Song M S and Park Y 2014 J. Power Sources 249 197
[11] Zhao Y S and Daemen L L 2012 J. Am. Chem. Soc. 134 15042
[12] Murugan R, Thangadurai V and Weppner W 2007 Angew. Chem. Int. Ed. 46 7778
[13] Cao Y, Li Y Q and Guo X X 2013 Chin. Phys. B 22 078201
[14] Feng J K, Yan B G, Liu J C, Lai M O and Li L 2013 Mater. Tech. 28 276
[15] Kanno R and Murayama M 2001 J. Electrochem. Soc. 148 A742
[16] Stephan A M 2006 European Polymer Journal 42 21
[17] Fergus J W 2010 J. Power Sources 195 4554
[18] Song J J, Wang Y and Wan C C 1999 J. Power Sources 77 183
[19] Fontenella J J, Wintergill M C, Calame J P and Andeen C G 1983 Solid State Ionics 8 333
[20] Mizuno F Hayashi A Tadanaga K and Masahiro T 2006 Solid State Ionics 177 2721
[21] Liu Z Q, Tang Y F, Wang Y M and Huang F Q 2014 J. Power Sources 260 264
[22] Kamaya N, Homma K, Yamakawa Y Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K and Mitsui A 2011 Nat. Mater. 10 682
[23] Adams S and Rao R P 2012 J. Mater. Chem. 22 7687
[24] Hu C H, Wang Z Q, Sun Z Y and Ouyang C Y 2014 Chem. Phys. Lett. 591 16
[25] Ong S P, Mo Y F and Richards W D 2013 Energy Environ. Sci. 6 148
[26] Wang Z Q, Wu M S, Liu G, Lei X L, Xu B and Ouyang C Y 2014 Int. J. Electrochem. Sci. 9 562
[27] Wang Y M, Liu Z Q, Zhu X L, Tang Y F and Huang F Q 2013 J. Power Sources 224 225
[28] Kobayashi T, Yamada A and Kanno R 2008 Electrochim. Acta 53 5045
[29] Mo Y F, Ong S P and Ceder G 2012 Chem. Mater. 24 15
[30] Ohta N, Takada K, Sakaguchi I, Zhang L Q, Ma R Z, Fukuda K, Osada M and Sasaki T 2007 Electrochem. Commun. 9 1486
[31] Ogawa M, Kanda R, Yoshida K, Uemura T and Harada K 2012 J. Power Sources 205 487
[32] Sakuda A, Kitaura H, Hayashi A, Tadanaga K and Tatsumisago M 2008 Electrochem. Solid-State Lett. 11 A1
[33] Ohta N, Takada K, Zhang L Q, Ma R Z, Osada M and Sasaki T 2006 Adv. Mater. 18 2226
[34] Takada K, Ohta N, Zhang L Q, Xu X X, Hang B T, Ohnishi T, Osada M and Sasaki T 2012 Solid State Ionics 225 594
[35] Hautier G, Jain A, Chen H L, Moore C, Ong S P and Ceder G 2011 J. Mater. Chem. 21 17147
[36] Ouyang C Y and Chen L Q 2013 Sci. Chin.-Phys. Mech. & Astron. 56 2278
[37] Xiao J M, Wang H and Ouyang C Y 2015 J. Jiangxi Norm. Univ. (Nat. Sci. Ed.) 39 73 (in Chinese)
[38] Blochl P E 1994 Phys. Rev. B 50 17953
[39] Wang Y and Perdew J P 1991 Phys. Rev. B 44 13298
[40] Henkelman G and Jónsson H 2000 J. Chem. Phys. 113 9978
[41] Aydinol M K, Kohn A F, Ceder G, Cho K and Joannopoulos J 1997 Phys. Rev. B 56 1354
[42] Ouyang C Y, Zhong Z Y and Lei M S 2007 Electrochem. Commun. 9 1107
[43] Zhong Z Y, Ouyang C Y, Shi S Q and Lei M S 2008 Chem. Phys. Chem. 9 2104
[44] Leal-Gonzalez J, Melibary S S and Smith A J 1990 Acta Cryst. C 46 2017
[45] Boyd G D, Kasper H M and McFee J H 1973 J. Appl. Phys. 44 2809
[46] Isaenko L, Vasilyeva I, Merkulov A, Yelisseyev A and Lobanov S 2005 J. Cryst. Growth 275 217
[47] Isaenko L I and Vasilyeva I G 2008 J. Cryst. Growth 310 1954
[48] Lagoun B, Bentria T and Bentria B 2013 Comput. Mater. Sci. 68 379
[49] Badikov V V, Chizhikov V I and Efimenko V V 2003 Opt. Mater. 23 575
[50] Ma T H Zhuang Z P and Ren Y L 2012 Acta Phys. Sin. 61 208401 (in Chinese)
[51] Ma T H, Yan C H, Xie Y, Sun L, Lv W Q, Wang R and Ren Y L 2010 Physica B 405 363
[52] Atuchin V V, Isaenko L I, Kesler V G, Lobanov S, Huang H and Lin Z S 2009 Solid State Commun. 149 572
[53] Elp van J, Wieland J L, Eskes H, Kuiper P, Sawatzky G A, Groot de F M F and Turner T S 1991 Phys. Rev. B 44 6090
[54] Ouyang C Y, Deng H D, Ye Z Q, Lei M S and Chen L Q 2006 Thin Solid Films 503 268
[55] Zhou F, Kang K S, Maxisch T, Ceder G and Morgan D 2004 Solid State Commun. 132 181
[56] Ning F H, Li S, Xu B and Ouyang C Y 2014 Solid State Ionics 263 46
[57] Van der Ven A, Ceder G, Asta M and Tepesch P D 2001 Phys. Rev. B 64 184307
[58] Ouyang C Y, Shi S Q, Wang Z X, Huang X J and Chen L Q 2004 Phys. Rev. B 69 104303
[59] Ouyang C Y, Shi S Q, Wang Z X, Huang X J and Chen L Q 2004 Europhys. Lett. 67 28
[60] Chen Y C, Ouyang C Y, Song L J and Sun Z L 2011 Electrochim Acta 56 6084
[1] Magnetic anisotropy in 5d transition metal-porphyrin molecules
Yan-Wen Zhang(张岩文), Gui-Xian Ge(葛桂贤), Hai-Bin Sun(孙海斌), Jue-Ming Yang(杨觉明), Hong-Xia Yan(闫红霞), Long Zhou(周龙), Jian-Guo Wan(万建国), and Guang-Hou Wang(王广厚). Chin. Phys. B, 2021, 30(4): 047501.
[2] Strain and interfacial engineering to accelerate hydrogen evolution reaction of two-dimensional phosphorus carbide
Tao Huang(黄韬), Yuan Si(思源), Hong-Yu Wu(吴宏宇), Li-Xin Xia(夏立新), Yu Lan(蓝郁), Wei-Qing Huang(黄维清), Wang-Yu Hu(胡望宇), and Gui-Fang Huang(黄桂芳). Chin. Phys. B, 2021, 30(2): 027101.
[3] First-principles study of magnetism of 3d transition metals and nitrogen co-doped monolayer MoS2
Long Lin(林龙), Yi-Peng Guo(郭义鹏), Chao-Zheng He(何朝政), Hua-Long Tao(陶华龙), Jing-Tao Huang(黄敬涛), Wei-Yang Yu(余伟阳), Rui-Xin Chen(陈瑞欣), Meng-Si Lou(娄梦思), Long-Bin Yan(闫龙斌). Chin. Phys. B, 2020, 29(9): 097102.
[4] Band structure, Fermi surface, elastic, thermodynamic, and optical properties of AlZr3, AlCu3, and AlCu2Zr: First-principles study
Parvin R, Parvin F, Ali M S, Islam A K M A. Chin. Phys. B, 2016, 25(8): 083101.
[5] Forming solid electrolyte interphase in situ in an ionic conductingLi1.5Al0.5Ge1.5(PO4)3-polypropylene (PP) basedseparator for Li-ion batteries
Jiao-Yang Wu(吴娇杨), Shi-Gang Ling(凌仕刚), Qi Yang(杨琪), Hong Li(李泓), Xiao-Xiong Xu(许晓雄), Li-Quan Chen(陈立泉). Chin. Phys. B, 2016, 25(7): 078204.
[6] All-solid-state lithium batteries with inorganic solid electrolytes: Review of fundamental science
Xiayin Yao(姚霞银), Bingxin Huang(黄冰心), Jingyun Yin(尹景云), Gang Peng(彭刚), Zhen Huang(黄祯), Chao Gao(高超), Deng Liu(刘登), Xiaoxiong Xu(许晓雄). Chin. Phys. B, 2016, 25(1): 018802.
No Suggested Reading articles found!