|
Abstract Interfacial charge transfer is the key kinetic process dictating the operation of lithium-ion battery. Redox-mediated charge propagations of the electronic (e- and h+) and ionic species (Li+) at the electrode-electrolyte interface have recently gained increasing attention for better exploitation of battery materials. This article briefly summarises the energetic and kinetic aspects of lithium-ion batteries, and reviews the recent progress on various redox-assisted Li+ storage approaches. From molecular wiring to polymer wiring and from redox targeting to redox flow lithium battery, the role of redox mediators and the way of the redox species functioning in lithium-ion batteries are discussed.
|
Received: 22 December 2015
Accepted manuscript online:
|
PACS:
|
82.30.Fi
|
(Ion-molecule, ion-ion, and charge-transfer reactions)
|
|
82.47.Aa
|
(Lithium-ion batteries)
|
|
Fund: Project supported by the National Research Foundation, Prime Minister's Office, Singapore under its Competitive Research Program (CRP Award No. NRF-CRP8-2011-04). |
Corresponding Authors:
Qing Wang
E-mail: msewq@nus.edu.sg
|
Cite this article:
Qizhao Huang(黄启昭) and Qing Wang(王庆) Redox-assisted Li+-storage in lithium-ion batteries 2016 Chin. Phys. B 25 018213
|
[1] |
Choi N S, et al. 2012 Angew. Chem. Int. Ed. 51 9994
|
[2] |
Huang Q, Li H, Grätzel M and Wang Q 2013 Phys. Chem. Chem. Phys. 15 1793
|
[3] |
Wang Q, Zakeeruddin S M, Wang D, Exnar I and Grätzel M 2006 Angew. Chem. Int. Ed. 45 8197
|
[4] |
Weppner W 2003 Ionics 9 444
|
[5] |
Weppner W 2001 Ionics 7 404
|
[6] |
Hausbrand R, et al. 2015 Mater. Sci. Engin. B 192 3
|
[7] |
Hausbrand R 2014 Phys. Stat. Sol. (a) 211 2049
|
[8] |
Ogumi Z 2010 Electrochem. 78 319
|
[9] |
Goodenough J B and Kim Y 2010 Chem. Mater. 22 587
|
[10] |
Xu K and von Cresce A 2011 J. Mater. Chem. 21 9849
|
[11] |
Aurbach D 2000 J. Power Sources 89 206
|
[12] |
Andersson A M, Abraham D P, Haasch R, MacLaren S, Liu J and Amine K 2002 J. Electrochem. Soc. 149 A1358
|
[13] |
Abe T, Fukuda H, Iriyama Y and Ogumi Z 2004 J. Electrochem. Society 151 A1120
|
[14] |
Doi T, Miyatake K, Iriyama Y, Abe T, Ogumi Z and Nishizawa T et al. 2004 Carbon 42 3183
|
[15] |
Ogumi Z, Abe T, Fukutsuka T, Yamate S and Iriyama Y 2004 J. Power Sources 127 72
|
[16] |
Xu K 2007 J. Electrochem. Soc. 154 A162
|
[17] |
Xu K, Lam Y, Zhang S S, Jow T R and Curtis T B 2007 J. Phys. Chem. C 111 7411
|
[18] |
Xu K, von Cresce A and Lee U 2010 Langmuir 26 11538
|
[19] |
Xu K 2014 Chem. Rev. 114 11503
|
[20] |
Aurbach D, et al. 2007 J. Power Sources 165 491
|
[21] |
Ganapathy S, van Eck E R H, Kentgens A P M, Mulder F M and Wagemaker M 2011 Chemistry 17 14811
|
[22] |
Wang Q, Zakeeruddin S M, Exnar I and Grätzel M 2004 J. Electrochem. Soc. 151 A1598
|
[23] |
Wang Q, Pechy P, Zakeeruddin S M, Exnar I and Grätzel M 2005 J. Power Sources 146 813
|
[24] |
Edström K, Gustafsson T and Thomas J O 2004 Electrochim. Acta 50 397
|
[25] |
Yamamoto K, et al. 2014 J. Phys. Chem. C 118 9538
|
[26] |
Takahashi M, Tobishima S I, Takei K and Sakurai Y 2002 Solid State Ion. 148 283
|
[27] |
Tang M, Carter W C and Chiang Y M 2010 Ann. Rev. Mater. Res. 40 501
|
[28] |
Dahn J R, Jiang J W, Moshurchak L, Buhrmester C and Wang R C L 2005 Interface 14 27
|
[29] |
Wang Q, Zakeeruddin S M, Exnar I and Grätzel M 2008 Electrochem. Commun. 10 651
|
[30] |
Wang Q, Evans N, Zakeeruddin S M, Exnar I and Grätzel M 2007 J. Am. Chem. Soc. 129 3163
|
[31] |
Wang Q, Evansa N, Zakeeruddina S M, Péchya P, Exnarb I and Grätzel M 2007 J. Power Sources 174 408
|
[32] |
Wang D, Ela S E, Zakeeruddin S M, Pechy P, Exnar I, Wang Q and Grätzel M 2009 Electrochem. Commun. 11 1350
|
[33] |
Huang Y H, Park K S and Goodenough J B 2006 J. Electrochem. Soc. 153 A2282
|
[34] |
Park K S, Schougaard S B and Goodenough J B 2007 Adv. Mater. 19 848
|
[35] |
Wang K X, Li X H and Chen J S 2015 Adv. Mater. 27 527
|
[36] |
Wang G X, Yang L, Chen Y, Wang J Z, Bewlay S and Liu H K 2005 Electrochim. Acta 50 4649
|
[37] |
Fedorková A, et al. 2010 J. Power Sources 195 3907
|
[38] |
Fedorková A, et al. 2010 J. Solid State Electrochem. 14 2173
|
[39] |
Arbizzani C, Balducci A, Mastragostino M, Rossi M and Soavi F 2003 J. Power Sources 119 695
|
[40] |
Her L J, Hong J L and Chang C C 2006 J. Power Sources 157 457
|
[41] |
Zhan L, et al. 2008 Electrochim. Acta 53 8319
|
[42] |
Lepage D, Michot C, Liang G, Gauthier M and Schougaard S B 2011 Angew. Chem. Int. Ed. 50 6884
|
[43] |
Jennings J R, Huang Q and Wang Q 2015 J. Phys. Chem. C 119 17522
|
[44] |
Pan F, Yang J, Huang Q, Wang X Z, Huang H and Wang Q 2014 Adv. Energy Mater. 4 1400567
|
[45] |
Jia C, Pan F, Zhu Y G, Huang Q, Lu L and Wang Q 2015 Sci. Adv. 1 e1500886
|
[46] |
Duduta M, Ho B, Wood V V, Limthongkul P, Brunini V E, Carter W C and Chiang Y M 2011 Adv. Energy Mater. 1 511
|
[47] |
Huang Q and Wang Q 2015 ChemPlusChem 80 312
|
[48] |
Li J, Yang L, Yang S and Lee J Y 2015 Adv. Energy Mater. 5 1501808
|
[49] |
Zhu Y G, Jia C, Pan F, Huang Q and Wang Q 2015 Chem. Commun. 51 9451
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|