Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 068201    DOI: 10.1088/1674-1056/28/6/068201
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Influence of carbon coating on the electrochemical performance of SiO@C/graphite composite anode materials

Hao Lu(陆浩)1,2, Junyang Wang(汪君洋)1,2, Bonan Liu(刘柏男)3, Geng Chu(褚赓)4, Ge Zhou(周格)1,2, Fei Luo(罗飞)5, Jieyun Zheng(郑杰允)1,2, Xiqian Yu(禹习谦)1,2, Hong Li(李泓)1,2
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences(CAS), Beijing 100049, China;
3 CAS Research Group on High Energy Density Lithium Batteries for EV, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
4 Key Laboratory of Green Process Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
5 Tianmulake Excellent Anode Materials Co., Ltd., Changzhou 213300, China
Abstract  

Silicon monoxide (SiO) has been considered as one of the most promising anode materials for next generation high-energy-density Li-ion batteries (LiBs) thanks to its high theoretical capacity. However, the poor intrinsic electronic conductivity and large volume change during lithium intercalation/de-intercalation restrict its practical applications. Fabrication of SiO/C composites is an effective way to overcome these problems. Herein, a series of micro-sized SiO@C/graphite (SiO@C/G) composite anode materials, with designed capacity of 600 mAh·g-1, are successfully prepared through a pitch pyrolysis reaction method. The electrochemical performance of SiO@C/G composite anodes with different carbon coating contents of 5 wt%, 10 wt%, 15 wt%, and 35 wt% is investigated. The results show that the SiO@C/G composite with 15-wt% carbon coating content exhibits the best cycle performance, with a high capacity retention of 90.7% at 25 ℃ and 90.1% at 45 ℃ after 100 cycles in full cells with LiNi0.5Co0.2Mn0.3O2 as cathodes. The scanning electron microscope (SEM) and electrochemistry impedance spectroscopy (EIS) results suggest that a moderate carbon coating layer can promote the formation of stable SEI film, which is favorable for maintaining good interfacial conductivity and thus enhancing the cycling stability of SiO electrode.

Keywords:  lithium-ion battery      silicon monoxide      carbon coating      anode material  
Received:  01 March 2019      Revised:  23 March 2019      Accepted manuscript online: 
PACS:  82.47.Aa (Lithium-ion batteries)  
  65.40.gk (Electrochemical properties)  
  82.45.Fk (Electrodes)  
  62.23.Pq (Composites (nanosystems embedded in a larger structure))  
Fund: 

Project supported by the State Grid Technology Project, China (study on the mechanism and characterization of lithium dendrite growth in lithium ion batteries, Project No. DG71-17-010), the National Key Research and Development Program of China (Grant No. 2017YFB0102004), and the National Natural Science Foundation of China (Grant No. 51822211).

Corresponding Authors:  Xiqian Yu, Hong Li     E-mail:  hli@iphy.ac.cn;xyu@iphy.ac.cn

Cite this article: 

Hao Lu(陆浩), Junyang Wang(汪君洋), Bonan Liu(刘柏男), Geng Chu(褚赓), Ge Zhou(周格), Fei Luo(罗飞), Jieyun Zheng(郑杰允), Xiqian Yu(禹习谦), Hong Li(李泓) Influence of carbon coating on the electrochemical performance of SiO@C/graphite composite anode materials 2019 Chin. Phys. B 28 068201

[1] Luo F, Liu B N, Zheng J Y, Chu G, Zhong K F, Li H, Huang X J and Chen L Q 2015 J. Electrochem. Soc. 162 A2509
[2] Bridel J S, Azaïs T, Morcrette M, Tarascon J M and Larcher D 2010 Chem. Mater. 22 1229
[3] Lu H, Liu B N, Chu G, Zheng J Y, Luo F, Qiu X P, Li H, Liu F, Feng S N, Chen W, Li H and Chen L Q 2016 Energy Storage Sci. Technol. 5 109
[4] Kasavajjula U, Wang C S and Appleby A J 2007 J. Power Sources 163 1003
[5] McDowell M T, Lee S W, Nix W D and Cui Y 2013 Adv. Mater. 25 4966
[6] Zheng J Y, Zheng H, Wang R, Ben L B, Lu W, Chen L W, Chen L Q and Li H 2014 Phys. Chem. Chem. Phys. 16 13229
[7] Luo F, Chu G, Xia X X, Liu B N, Zheng J Y, Li J J, Li H, Gu C Z and Chen L Q 2015 Nanoscale 7 7651
[8] Shi L R, Pang C L, Chen S L, Wang M Z, Wang K X, Tan Z J, Gao P, Ren J G, Huang Y Y, Peng H L and Liu Z G 2017 Nano Lett. 17 3681
[9] Ren Y R, Ding J N, Yuan N G, Jia S Y, Qu M Z and Yu Z L 2012 J. Solid State Electrochem. 16 1453
[10] Hou X H, Wang J Y, Zhang M, Liu X, Shao Z P, Li W S and Hu S J 2014 RSC Adv. 4 34615
[11] Ren Y R, Wu X M and Li M Q 2016 Electrochim. Acta 206 328
[12] Meng J K, Cao Y, Suo Y, Liu Y S, Zhang J M and Zheng X C 2015 Electrochim. Acta 176 1001
[13] Li Z H, He Q, He L, Hu P, Li W, Yan H W, Peng X Z, Huang C Y and Mai L Q 2017 J. Mater. Chem. A 5 4183
[14] Xu T, Zhang J, Yang C Y, Luo H B, Xia B J and Xie X H 2018 J. Alloys Compd. 738 323
[15] Hwa Y, Park C M and Sohn H J 2013 J. Power Sources 222 129
[16] Lee J I, Choi N S and Park S 2012 Energy Environ. Sci. 5 7878
[17] Hohl A, Wieder T, van Aken P A, Weirich T E, Denninger G, Vidal M, Oswald S, Deneke C, Mayer J and Fuess H 2003 J. Non-Cryst. Solids 320 255
[18] Woo J and Baek S H 2017 RSC Adv. 7 4501
[19] Woo J, Baek S H, Park J S, Jeong Y M and Kim J H 2015 J. Power Sources 299 25
[20] Yom J H, Lee J K and Yoon W Y 2015 J. Appl. Electrochem. 45 397
[21] Dou F, Shi L Y, Song P G and Chen G R 2018 Chem. Eng. J. 338 488
[22] Li W, Chen M Z, Jiang J J, Wu R, Wang F, Liu W J, Peng G C and Qu M Z 2015 J. Alloys Compd. 637 476
[23] Qian L Z, Lan J L, Xue M Y, Yu Y H and Yang X P 2017 RSC Adv. 7 36697
[24] Hou Y H, Yuan H L, Chen H, Shen J H and Li L C 2017 Ceram. Int. 43 11505
[25] Wang J, Zhao H L, He J C, Wang C M and Wang J 2011 J. Power Sources 196 4811
[26] Lee D J, Ryou M H, Lee J N, Kim B G, Lee Y M, Kim H W, Kong B S, Park J K and Choi J W 2013 Electrochem. Commun. 34 98
[1] Probing the improved stability for high nickel cathode via dual-element modification in lithium-ion
Fengling Chen(陈峰岭), Chaozhi Zeng(曾朝智), Chun Huang(黄淳), Jiannan Lin(林建楠), Yifan Chen(陈一帆), Binbin Dong(董彬彬), Chujun Yin(尹楚君), Siying Tian(田飔莹), Dapeng Sun(孙大鹏), Zhenyu Zhang(张振宇), Hong Li(李泓), and Chaobo Li(李超波). Chin. Phys. B, 2022, 31(7): 078101.
[2] Enhancement of electrochemical performance in lithium-ion battery via tantalum oxide coated nickel-rich cathode materials
Fengling Chen(陈峰岭), Jiannan Lin(林建楠), Yifan Chen(陈一帆), Binbin Dong(董彬彬), Chujun Yin(尹楚君), Siying Tian(田飔莹), Dapeng Sun(孙大鹏), Jing Xie (解婧),Zhenyu Zhang(张振宇), Hong Li(李泓), and Chaobo Li(李超波). Chin. Phys. B, 2022, 31(5): 058101.
[3] Review on electrode-level fracture in lithium-ion batteries
Bo Lu(吕浡), Chengqiang Ning(宁成强), Dingxin Shi(史定鑫), Yanfei Zhao(赵炎翡), Junqian Zhang(张俊乾). Chin. Phys. B, 2020, 29(2): 026201.
[4] Parameter identification and state-of-charge estimation approach for enhanced lithium-ion battery equivalent circuit model considering influence of ambient temperatures
Hui Pang(庞辉), Lian-Jing Mou(牟联晶), Long Guo(郭龙). Chin. Phys. B, 2019, 28(10): 108201.
[5] Performance of n-type silicon/silver composite anode material in lithium ion batteries: A study on effect of work function matching degree
Guo-Jun Xu(徐国军), Chen-Xin Jin(金晨鑫), Kai-Jie Kong(孔凯捷), Xi-Xi Yang(杨西西), Zhi-Hao Yue(岳之浩), Xiao-Min Li(李晓敏), Fu-Gen Sun(孙福根), Hai-Bin Huang(黄海宾), Lang Zhou(周浪). Chin. Phys. B, 2018, 27(10): 108201.
[6] Multi-scale computation methods: Their applications in lithium-ion battery research and development
Siqi Shi(施思齐), Jian Gao(高健), Yue Liu(刘悦), Yan Zhao(赵彦), Qu Wu(武曲), Wangwei Ju(琚王伟), Chuying Ouyang(欧阳楚英), Ruijuan Xiao(肖睿娟). Chin. Phys. B, 2016, 25(1): 018212.
[7] Redox-assisted Li+-storage in lithium-ion batteries
Qizhao Huang(黄启昭) and Qing Wang(王庆). Chin. Phys. B, 2016, 25(1): 018213.
[8] Microwave dielectric properties of Nextel-440 fiber fabrics with pyrolytic carbon coatings in the temperature range from room temperature to 700 ℃
Song Hui-Hui (宋荟荟), Zhou Wan-Cheng (周万城), Luo Fa (罗发), Qing Yu-Chang (卿玉长), Chen Ma-Lin (陈马林). Chin. Phys. B, 2015, 24(8): 088107.
[9] Analysis on the capacity degradation mechanism of a series lithium-ion power battery pack based on inconsistency of capacity
Wang Zhen-Po (王震坡), Liu Peng (刘鹏), Wang Li-Fang (王丽芳). Chin. Phys. B, 2013, 22(8): 088801.
[10] Cation mixing (Li0.5Fe0.5)2SO4F cathode material for lithium-ion batteries
Sun Yang(孙洋), Liu Lei(刘磊), Dong Jin-Ping(董金平), Zhang Bin(张斌), and Huang Xue-Jie(黄学杰). Chin. Phys. B, 2011, 20(12): 126101.
[11] Electrochemical properties of SnO2 nanorods as anode materials in lithium-ion battery
Shi Song-Lin(施松林), Liu Yong-Gang(刘永刚), Zhang Jing-Yuan(张敬源), and Wang Tai-Hong(王太宏). Chin. Phys. B, 2009, 18(10): 4564-4570.
No Suggested Reading articles found!