Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 120202    DOI: 10.1088/1674-1056/ac2b16
Special Issue: SPECIAL TOPIC— Interdisciplinary physics: Complex network dynamics and emerging technologies
SPECIAL TOPIC—Interdisciplinary physics: Complex network dynamics and emerging technologies Prev   Next  

Prediction of epidemics dynamics on networks with partial differential equations: A case study for COVID-19 in China

Ru-Qi Li(李汝琦)1, Yu-Rong Song(宋玉蓉)2, and Guo-Ping Jiang(蒋国平)2,†
1 School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 College of Automation and College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Abstract  Since December 2019, the COVID-19 epidemic has repeatedly hit countries around the world due to various factors such as trade, national policies and the natural environment. To closely monitor the emergence of new COVID-19 clusters and ensure high prediction accuracy, we develop a new prediction framework for studying the spread of epidemic on networks based on partial differential equations (PDEs), which captures epidemic diffusion along the edges of a network driven by population flow data. In this paper, we focus on the effect of the population movement on the spread of COVID-19 in several cities from different geographic regions in China for describing the transmission characteristics of COVID-19. Experiment results show that the PDE model obtains relatively good prediction results compared with several typical mathematical models. Furthermore, we study the effectiveness of intervention measures, such as traffic lockdowns and social distancing, which provides a new approach for quantifying the effectiveness of the government policies toward controlling COVID-19 via the adaptive parameters of the model. To our knowledge, this work is the first attempt to apply the PDE model on networks with Baidu Migration Data for COVID-19 prediction.
Keywords:  partial differential equations      intervention measures      Baidu Migration Data      COVID-19 prediction  
Received:  17 July 2021      Revised:  13 September 2021      Accepted manuscript online:  29 September 2021
PACS:  02.30.Jr (Partial differential equations)  
  88.10.gc (Simulation; prediction models)  
  02.60.Ed (Interpolation; curve fitting)  
  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61672298, 61873326, and 61802155) and the Philosophy Social Science Research Key Project Fund of Jiangsu University (Grant No. 2018SJZDI142).
Corresponding Authors:  Guo-Ping Jiang     E-mail:  jianggp@njupt.edu.cn

Cite this article: 

Ru-Qi Li(李汝琦), Yu-Rong Song(宋玉蓉), and Guo-Ping Jiang(蒋国平) Prediction of epidemics dynamics on networks with partial differential equations: A case study for COVID-19 in China 2021 Chin. Phys. B 30 120202

[1] Newman M 2003 SIAM Rev. 45 167
[2] Newman M 2010 Networks, An introdution (Oxford: Oxford University Press)
[3] Valba O, Avetisov V, Gorsky A and Nechaev S 2020 Phys. Rev. E 102 010401
[4] He S, Tang S and Rong L 2020 Math. Biosci. Eng. 17 2792
[5] Li Y, Zhao S, Luo Y, Gao D, Yang L and He D 2020 Acta Phys. Sin. 69 090202 (in Chinese)
[6] Yang Z, Zeng Z, Wang K, et al 2020 J. Thorac. Dis. 12 165
[7] Lai S, Ruktanonchai N W, Zhou L, Prosper O, Luo W, Floyd J R, Wesolowski A, Santillana M, Zhang C, Du X, Yu H, Tatem A J 2020 Nature 585 410
[8] Tao Y 2020 Phys. Rev. E 102 032136
[9] de Sousa L E, Neto P H O and Filho D A D S 2020 Phys. Rev. E 102 032133
[10] Maier B F and Brockmann D 2020 Science 368 742
[11] Prem K, Liu Y, Russell T W, Kucharski A J, Eggo R M and Davies N 2020 Lancet Public Health 5 e261
[12][12] Wang H,Wang F and Xu K 2020 Modeling information diffusion in online social networks with partial differential equations (Cham, Switzerland: Springer)
[13] Brauer F, Castillo-Chavez C and Feng Z 2019 Mathematical Models in Epidemiology (Cham, Switzerland: Springer)
[14] Holmes E E, Lewis M A, Banks J E and Veit R R 1994 Ecology 75 17
[15] Zhu M, Guo X and Lin Z 2017 Math. Biosci. Eng. 14 1565
[16] Wang Y, Xu K, Kang Y, Wang H, Wang F and Avram A 2020 Int. J. Environ. Res. Public Health 17 678
[17] Wang H and Yamamoto N 2020 Math. Biosci. Eng. 17 4891
[18] Baidu qianxi. https://qianxi.baidu.com/[2021-7-15]
[19] Chen S, Yang J, Yang W, Wang C and Barnighausen T 2020 Lancet 395 764
[20] Halloran M E, Vespignani A, Bharti N, Feldstein L R, Alexander K A, Ferrari M, Shaman J, Drake J M, Porco T, Eisenberg J N S, Del Valle S Y, Lofgren E, Scarpino S V, Eisenberg M C, Gao D, Hyman J M, Eubank S and Longini I M 2014 Science 346 433
[21] Jia J S, Lu X, Yuan Y, Xu G, Jia J and Christakis N A 2020 Nature 582 389
[22] Kraemer M U G, Yang C H, Gutierrez B, Wu C H, Klein B, Pigott D M, du Plessis L, Faria N R, Li R, Hanage W P, Brownstein J S, Layan M, Vespignani A, Tian H, Dye C, Pybus O G and Scarpino S V 2020 Science 368 493
[23] China News [2021-7-15]
[24] Tian H, Liu Y, Li Y, Wu C, Chen B, Kraemer M U G, Li B, Cai J, Xu B, Yang Q, Wang B, Yang P, Cui Y, Song Y, Zheng P, Wang Q, Bjornstad O N, Yang R, Grenfell B T, Pybus O G and Dye C 2020 Science 368 638
[25] China Data Lab. 2021 China COVID-19 Daily Cases with Basemap [2021-7-15]
[26] Arendt W, Dier D and Kramar Fijavz M 2014 Appl. Math. Optim. 69 315
[27] von Below J 1988 J. Differ. Equ. 72 316
[28] Murray J D 2002 Photosynthetica 40 414
[29] WHO 2019 Novel Coronavirus (2019-nCoV) Situation Report - 7 [2021-9-12]
[30] Li Q, Guan X, Wu P, et al 2020 N. Engl. J. Med. 382 1199
[31] Tang S, Yan Q, Shi W, Wang X, Sun X, Yu P, Wu J and Xiao Y 2018 Environ Pollut. 232 477
[32] Oseledets I V 2011 SIAM J. Sci. Comput. 33 2295
[33] Lagarias J C, Reeds J A, Wright M H and Wright P E 1998 SIAM J. Optim. 9 112
[34] Sahai A K, Rath N, Sood V and Singh M P 2020 Diabetes Metab Syndr. 14 1419
[35] Prem K, Liu Y, Russell T W, Kucharski A J, Eggo R M, Davies N, Jit M and Klepac P 2020 Lancet Public Health 5 e260
[36] China News [2021-9-12]
[37] Li B, Deng A, Li K, et al 2021 medRxiv: 2021.07.07.21260122 [Epidemiology]
[1] Propagation of kink-antikink pair along microtubules as a control mechanism for polymerization and depolymerization processes
L. Kavitha, A. Muniyappan, S. Zdravković, M. V. Satarić, A. Marlewski, S. Dhamayanthi, D. Gopi. Chin. Phys. B, 2014, 23(9): 098703.
[2] Oscillating multidromion excitations in higher-dimensional nonlinear lattice with intersite and external on-site potentials using symbolic computation
B. Srividya, L. Kavitha, R. Ravichandran, D. Gopi. Chin. Phys. B, 2014, 23(1): 010307.
[3] Element-free Galerkin (EFG) method for analysis of the time-fractional partial differential equations
Ge Hong-Xia(葛红霞), Liu Yong-Qing(刘永庆), and Cheng Rong-Jun(程荣军) . Chin. Phys. B, 2012, 21(1): 010206.
[4] A new variable coefficient algebraic method and non-travelling wave solutions of nonlinear equations
Lu Bin (陆 斌), Zhang Hong-Qing (张鸿庆). Chin. Phys. B, 2008, 17(11): 3974-3984.
[5] Exponential--fraction trial function method to the 5th-order mKdV equation
Li Ya-Zhou(李亚洲), Feng Wei-Gui(冯维贵), Li Kai-Ming(李开明), and Lin Chang(林长). Chin. Phys. B, 2007, 16(9): 2510-2513.
No Suggested Reading articles found!