PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Analysis of electromagnetic pulses generated from ultrashort laser irradiation of solid targets at CLAPA |
Yi-Lin Xu(徐毅麟)1, Dong-Yu Li(李东彧)2, Ya-Dong Xia(夏亚东)2, Si-Yuan Zhang(张思源)2, Min-Jian Wu(吴旻剑)2, Tong Yang(杨童)2, Jun-Gao Zhu(朱军高)2, Hao Cheng(程浩)2, Chuan-Ke Wang(王传珂)3, Chen Lin(林晨)2,†, Ting-Shuai Li(李廷帅)1,‡, and Xue-Qing Yan(颜学庆)2 |
1 School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; 2 State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871, China; 3 Research Center of Laser Fusion, China Academy of Engineering Physics(CAEP), Mianyang 621900, China |
|
|
Abstract Electromagnetic pulses (EMPs) produced by the interaction of a TW femtosecond laser with solid targets at the Compact Laser Plasma Accelerator (CLAPA) are measured and interpreted. The statistical results confirm that the intensities of the EMPs are closely related to both target material and thickness. The signal of the titanium target is more abundant than that of the copper target with the same thickness, and the intensity of EMP is positively correlated with the target thickness for aluminium foil. With the boosted EMP radiations, the energy of accelerated protons is also simultaneously enhanced. In addition, EMPs emitted from the front of the target exceed those from the rear, which are also pertinent to the specific target position. The resonant waveforms in the target chamber are analyzed using the fast Fourier transform, and the local resonance and the attenuation lead to changes of the frequency spectra of EMPs with variation of detecting positions, which is well supported by the modeling results. The findings are beneficial to gaining insight into the mechanism of EMP propagation in a typical target chamber and providing more information for EMP shielding design.
|
Received: 06 August 2021
Revised: 21 October 2021
Accepted manuscript online: 06 November 2021
|
PACS:
|
52.40.Db
|
(Electromagnetic (nonlaser) radiation interactions with plasma)
|
|
41.75.Jv
|
(Laser-driven acceleration?)
|
|
33.20.Xx
|
(Spectra induced by strong-field or attosecond laser irradiation)
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11975037 and 11921006) and the National Grand Instrument Project of China (Grant Nos. 2019YFF01014400 and 2019YFF01014404). |
Corresponding Authors:
Chen Lin, Ting-Shuai Li
E-mail: lc0812@pku.edu.cn;litingshuai@uestc.edu.cn
|
Cite this article:
Yi-Lin Xu(徐毅麟), Dong-Yu Li(李东彧), Ya-Dong Xia(夏亚东), Si-Yuan Zhang(张思源), Min-Jian Wu(吴旻剑), Tong Yang(杨童), Jun-Gao Zhu(朱军高), Hao Cheng(程浩), Chuan-Ke Wang(王传珂), Chen Lin(林晨), Ting-Shuai Li(李廷帅), and Xue-Qing Yan(颜学庆) Analysis of electromagnetic pulses generated from ultrashort laser irradiation of solid targets at CLAPA 2022 Chin. Phys. B 31 025205
|
[1] Consoli F, Tikhonchuk V T, Bardon M, Bradford P, Carroll D, Cikhardt J, Cipriani R, Clarke J, Cowan T, Danson C, Angelis R, Marco M, Dubois J, Etchessahar B, Garcia A, Hillier D, Honsa A, Jiang W, Kmetik V, Krasa J, Li Y, Lubrano F, McKenna P, Metzkes J, Poye A, Prencipe I, Raczka P, Smith R A, Vrana R, Woolsey N C, Zemaityte E, Zhang Y, Zielbauer B and Neely D 2020 High Power Laser Sci. 8 e22 [2] Hatchett S, Brown C G, Cowan T, Henry E, Johnson J, Key M, Koch A, Langdon A, Lasinski B, Lee R, Mackinnon, Pennington D, Perry M, Phillips T, Roth M, Sangster T, Singh M, Snavely R, Stoyer M, Wilks S and Yasuike K 2020 Phys. Plasmas 7 2076 [3] Brown C G, Ayers J, Felker B, Ferguson W, Holder J, Nagel S, Piston K, Simanovskaia N, Throop A L, Chung M and Hilsabeck T 2012 Rev. Sci. Instrum. 83 10D729 [4] Cikhardt J, Krasa J, Marco M D, Pfeifer M, Velyhan A, Krousky E, Cikhardtova B, Klir D, Rezac K, Ullschmied J, Skala J, Kubes P and Kravarik J 2014 Rev. Sci. Instrum. 85 103507 [5] Krása J, Marco M, J Cikhardt, Pfeifer M, Velyhan A, Klír D, Řezáč K, Limpouch J, Krouský E, Dostál J, Ullschmied J and Dudžák R 2017 Plasma Phys. Contr. F. 59 065007 [6] Marco M D, Krása J, Cikhardt J, Velyhan A, Pfeifer M, Dudžák R, Dostál J, Krouský E, Limpouch J, Pisarczyk T, Kalinowska Z, Chodukowski T, Ullschmied J, Giuffrida L, Chatain D, Perin J and Margarone D 2017 Phys. Plasmas 24 083103 [7] Bisesto F, Anania M, Botton M, E Chiadroni, Cianchi A, Curcio A, Ferrario M, Galletti M, Henis Z, Pompili R, Schleifer E and Zigler A 2018 Nucl. Instrum. Meth. A. 909 398 [8] Bradford P, Woolsey N, Scott G, Liao G, Liu H, Zhang Y, Zhu B, Armstrong C, Astbury S, Brenner C, Brummitt P, Consoli F, East I, Gray R, Haddock D, Huggard P, Jones P, Montgomery E, Musgrave I, Oliveira P, Rusby D, Spindloe C, Summers B, Zemaityte E, Zhang, Li Y, McKenna P and Neely D 2018 High Power Laser Sci. 6 e21 [9] Varma S, Spicer J, Brawley B and Miragliotta J 2014 Opt. Eng. 53 051515 [10] Yang Y, Yi T, Yang M, Wang C and Li T 2019 Laser Phys. 29 016003 [11] Yang M, Li T, Wang C, Yang J, Yang W, Yi T, Liu S, Jiang S and Ding Y 2016 Chin. Opt. Lett. 14 101402 [12] Wang W, Cai H, Teng J, Chen J, He S, Shan L, Lu F, Wu Y, Zhang B, Hong W, Bi B, Zhang F, Liu D, Xue F, Li B, Liu H, He W, Jiao J, Dong K, Zhang F, He Y, Cui B, Xie N, Yuan Z, Tian C, Wang X, Zhou K, Deng Z, Zhang Z, Zhou W, Cao L, Zhang B, Zhu S, He X and Gu Y 2018 Phys. Plasmas 25 083111 [13] Consoli F, Angelis R, Robinson T, Giltrap S, Hicks G, Ditter E, Ettlinger O, Najmudin, Notley M and Smith R 2019 Sci. Rep. 9 8551 [14] Consoli F, Angelis R, Marco M, Krasa J, Cikhardt J, Pfeifer M, Margarone D, Klir D and Dudzak R 2018 Plasma Phys. Contr. F. 60 105006 [15] Kumar L, Manikanta E, Leela C and Kiran P 2014 Appl. Phys. Lett. 105 064102 [16] Torrisi L, Marco M, Krása J, Cikhardt J, Consoli F, Angelis R, Pfeifer M, Krůs M, Dostál J, Margarone D, Picciotto A, Velyhan A, Klír D, Dudžák R, Limpouch J, Korn G and Cutroneo M 2018 EPJ Web of Conferences 167 03009 [17] Minenna D, PoyéA, Bradford P, Woolsey N and Tikhonchuk V 2020 Phys. Plasmas 27 063102 [18] Dubois J, Lavaderci F, Raffestin D, Ribolzi J, Gazave J, Fontaine A, Humieres E, Hulin S, Nicolai P, Poye A and Tikhonchuk V 2014 Phys. Rev. E 89 013102 [19] Poye A, Dubois J, Lavaderci F, Humieres E, Bardon M, Hulin S, Grandvaux M, Ribolzi J, Raffestin D, Santos J, Nicolai P and Tikhonchuk V 2015 Phys. Rev. E 92 043107 [20] Bogatskaya A, Volkova E and Popov A 2019 Laser Phys. 29 086002 [21] Krása J, Consoli F, Cikhardt J, Pfeifer M, Angelis R, Krupka M, Klír D, Řezáč K, Dostál J, Krůs M and Dudžák R 2020 Plasma Phys. Contr. F. 62 025021 [22] Zhang G, Xia Y, Yi T, Wang Q, Wang C and Li T 2019 Fusion Eng. Des. 141 21 [23] Marco M, Pfeifer M, Krousky E, Krasa J, Cikhardt J, Klir D and Nassisi V 2014 J. Phys. Conf. Ser. 508 012007 [24] Marco M, Krása J, Cikhardt J, Pfeifer M, Krouský E, Margarone D, Ahmed H, Borghesi M, Kar S, Giuffrida L, Vrana R, Velyhan A, Limpouch J, Korn G, Weber S, Velardi L, Side D, Nassisi V and Ullschmied J 2016 J. Instrum. 11 C06004 [25] Liao Q, Wu M, Gong Z, Geng Y, Xu X, Li D, Shou Y, Zhu J, Li C, Yang M, Li T, Lu H, Ma W, Zhao Y, Lin C and Yan X 2018 Phys. Plasmas 25 063109 [26] Fernández J, Cobble J, Montgomery D, Wilke M and Afeyan B 2000 Phys. Plasmas 7 3743 [27] Zhu J, Wu M, Liao Q, Geng Y, Zhu K, Li C, Xu X, Li D, Shou Y, Yang T, Wang P, Wang D, Wang J, Chen C, He X, Zhao Y, Ma W, Lu H, Tajima T, Lin C and Yan X 2019 Phys. Rev. Accel. Beams 22 061302 [28] Xia Y, Li D, Zhang S, Wu M, Yang T, Geng Y, Zhu J, Xu X, Li C, Wang F, Lin C, Li T and Yan X 2020 Phys. Plasmas 27 032705 [29] He Q, Kang N, Ren L, Tian C, Wang C, Zhang Z, Liu D, Yang L, Liu H, Sun M, Zhu B, Zhou W and Li T 2021 Plasma Sci. Technol. 23 115202 [30] Wu M, Zhu J, Li D, Yang T, Liao Q, Geng Y, Xu X, Li C, Shou Y, Zhao Y, Lu Y, Lu H, Ma W, Lin C, Zhu K and Yan X 2020 Nucl. Instrum. Meth. A. 955 163249 [31] Brown C G, Bond E, Clancy T, Dangi S, Eder D C, Ferguson W, Kimbrough J and Throop A 2010 J. Phys. Conf. Ser. 244 032001 [32] Consoli F, Andreoli P L, Cipriani1M, Cristofari G, Angelis R, Giorgio G, Duvillaret L, Krása J, Neely D, Salvadori M, Scisció M, Smith R and Tikhonchuk V T 2020 Phil. Trans. R. Soc. A 379 20200022 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|