Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 025203    DOI: 10.1088/1674-1056/ac1fd9
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Scaling of rise time of drive current on development of magneto-Rayleigh-Taylor instabilities for single-shell Z-pinches

Xiaoguang Wang(王小光), Guanqiong Wang(王冠琼), Shunkai Sun(孙顺凯), Delong Xiao(肖德龙), Ning Ding(丁宁), Chongyang Mao(毛重阳), and Xiaojian Shu(束小建)
Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
Abstract  In fast Z-pinches, rise time of drive current plays an important role in development of magneto-Rayleigh-Taylor (MRT) instabilities. It is essential for applications of Z-pinch dynamic hohlraum (ZPDH), which could be used for driving inertial confinement fusion (ICF), to understand the scaling of rise time on MRTs. Therefore, a theoretical model for nonlinear development of MRTs is developed according to the numerical analysis. It is found from the model that the implosion distance L=r0-rmc determines the development of MRTs, where r0 is the initial radius and rmc is the position of the accelerating shell. The current rise time τ would affect the MRT development because of its strong coupling with the r0. The amplitude of MRTs would increase with the rise time linearly if an implosion velocity is specified. The effects of the rise time on MRT, in addition, are studied by numerical simulation. The results are consistent with those of the theoretical model very well. Finally, the scaling of the rise time on amplitude of MRTs is obtained for a specified implosion velocity by the theoretical model and numerical simulations.
Keywords:  magneto-Rayleigh-Taylor instability      rise time      Z-pinch      magnetohydrodynamic  
Received:  19 April 2021      Revised:  22 July 2021      Accepted manuscript online:  22 August 2021
PACS:  52.57.Fg (Implosion symmetry and hydrodynamic instability (Rayleigh-Taylor, Richtmyer-Meshkov, imprint, etc.))  
  52.59.Qy (Wire array Z-pinches)  
  52.30.Cv (Magnetohydrodynamics (including electron magnetohydrodynamics))  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 11975057, 11605013,11775023, and 11705013).
Corresponding Authors:  Delong Xiao     E-mail:  xiao_delong@iapcm.ac.cn

Cite this article: 

Xiaoguang Wang(王小光), Guanqiong Wang(王冠琼), Shunkai Sun(孙顺凯), Delong Xiao(肖德龙), Ning Ding(丁宁), Chongyang Mao(毛重阳), and Xiaojian Shu(束小建) Scaling of rise time of drive current on development of magneto-Rayleigh-Taylor instabilities for single-shell Z-pinches 2022 Chin. Phys. B 31 025203

[1] Slutz S A, Bailey J E, Chandler G A et al. 2003 Phys. Plasmas 10 1875
[2] Sanford T W L, Lemke R W, Mock R C et al. 2002 Phys. Plasmas 9 3573
[3] Rochau G A, Bailey J E, Chandler G A et al. 2007 Plasma Phys. Control. Fusion 49 B591
[4] Lash J S, Chandler G A, Cooper G et al. 2000 Comptes Rendus de l'Académie des Sciences-Series IV-Physics 1 759
[5] Bailey J E, Chandler G A, Slutz S A et al. 2004 Phys. Rev. Lett. 92 085002
[6] Haines M G 2011 Plasma Phys. Control. Fusion 53 093001
[7] Ruiz C L, Cooper G W, Slutz S A et al. 2004 Phys. Rev. Lett. 93 015001
[8] Bailey J E, Chandler G A, Mancini R. C et al. 2006 Phys. Plasmas 13 056301
[9] Slutz S A, Peterson K J, Vesey R A et al. 2006 Phys. Plasmas 13 102701
[10] Sanford T W L, Nash T J, Mock R C et al. 2006 Phys. Plasmas 13 012701
[11] Rochau G A, Bailey J E, Maron Y et al. 2008 Phys. Rev. Lett. 100 125004
[12] Winske D 1996 Phys. Plasmas 3 3966
[13] Douglas M R, De Groot J S and Spielman R B 2001 Laser Particle Beams 19 527
[14] Miles A R 2009 Phys. Plasmas 16 032702
[15] Ryutov D D, Derzon M S and Matzen M K 2000 Rev. Mod. Phys. 72 167
[16] de Grouchy P W L, Kusse B R, Banasek J et al. 2018 Phys. Plasmas 25 072701
[17] Sun Y B and Piriz A R 2014 Phys. Plasmas 21 072708
[18] Sinars D B, Slutz S A, Herrmann M C et al. 2010 Phys. Rev. Lett. 105 185001
[19] Peterson D L, Bowers R L, Brownell J H et al. 1996 Phys. Plasmas 3 368
[20] Peterson D L, Bowers R L, Matuska W et al. 1999 Phys. Plasmas 6 2178
[21] Lemke R W, Bailey J E, Chandler G A et al. 2004 Phys. Plasmas 12 012703
[22] Slutz S A 2018 Phys. Plasmas 25 082707
[23] Srinivasan B and Hakim A 2018 Phys. Plasmas 25 092108
[24] Weis M R, Zhang P, Lau Y Y et al. 2015 Phys. Plasmas 22 032706
[25] Huang B, Tomizuka T, Xie B et al. 2013 Phys. Plasmas 20 112113
[26] Zhang P, Lau Y Y, Rittersdorf I M et al. 2012 Phys. Plasmas 19 022703
[27] Kantsyrev V L, Esaulov A A, Safronova A S et al. 2011 Phys. Rev. E 84 046408
[28] Lau Y Y, Zier J C, Rittersdorf I M et al. 2011 Phys. Rev. E 83 066405
[29] Zhang Y and Ding N 2008 Chin. Phys. B 17 2994
[30] Zhang Y and Ding N 2006 Phys. Plasmas 13 022701
[31] Sinars D B, Cuneo M E, Jones B et al. 2005 Phys. Plasmas 12 056303
[32] Wu J, Lu Y, Sun F et al. 2018 Plasma Phys. Control. Fusion 60 075014
[33] Duan S, Xie W, Cao J et al. 2018 Phys. Plasmas 25 042701
[34] Yang X, Xiao D L, Ding N et al. 2017 Chin. Phys. B 26 075202
[35] Nash T J, Deeney C, Chandler G A et al. 2004 Phys. Plasmas 11 L65
[36] Velikovich A L, Cochran F L and Davis J 1996 Phys. Rev. Lett. 77 853
[37] Liberman M A, Groot J S D, Toor A et al. 1999 Physics of high-density Z-pinch plasmas (New York:Springer Science+Business Media)
[38] Deeney C, LePell P D, Failor B H et al. 1994 J. Appl. Phys. 75 2781
[39] Sze H, Levine J. S, Banister J et al. 2007 Phys. Plasmas 14 056307
[40] Kantsyrev V L, Chuvatin A S, Safronova A S et al. 2014 Phys. Plasmas 21 031204
[41] Lee Y T and More R M 1984 Phys. Fluids 27 1273
[42] Mignone A, Bodo G, Massaglia S et al. 2007 Astrophys. J. Suppl. Ser. 170 228
[43] Wang X G, Sun S K, Xiao D L et al. 2019 Chin. Phys. B 28 035201
[44] Ryutov D D 2018 Phys. Plasmas 25 100501
[45] Douglas M R, Deeney C and Roderick N F 1998 Phys. Plasmas 5 4183
[46] Ofer D, Alon U, Shvarts D et al. 1996 Phys. Plasmas 3 3073
[47] Hammer J H, Eddleman J L, Springer P T et al. 1996 Phys. Plasmas 3 2063
[48] Yager-Elorriaga D A, Steiner A M, Campbell P C et al. 2016 Phys. Plasmas 23 124502
[49] Sharp D H 1984 Physica D 12 3
[50] Youngs D L 1984 Physica D 12 32
[51] Zhou Y 2017 Phys. Rep. 720-722 1
[52] Dimonte G and Schneider M 1996 Phys. Rev. E 54 3740
[53] Yager-Elorriaga D A, Lau Y Y, Zhang P et al. 2018 Phys. Plasmas 25 056307
[54] Oreshkin V I, Baksht R B, Cherdizov R K et al. 2021 Plasma Phys. Control. Fusion 63 045022
[1] Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas
Ding-Zong Zhang(张定宗), Xu-Ming Feng(冯旭铭), Jun Ma(马骏), Wen-Feng Guo(郭文峰), Yan-Qing Huang(黄艳清), and Hong-Bo Liu(刘洪波). Chin. Phys. B, 2023, 32(1): 015201.
[2] Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis
Fazal Haq, Muhammad Ijaz Khan, Sami Ullah Khan, Khadijah M Abualnaja, and M A El-Shorbagy. Chin. Phys. B, 2022, 31(8): 084703.
[3] Magnetohydrodynamic Kelvin-Helmholtz instability for finite-thickness fluid layers
Hong-Hao Dai(戴鸿昊), Miao-Hua Xu(徐妙华), Hong-Yu Guo(郭宏宇), Ying-Jun Li(李英骏), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(12): 120401.
[4] Application of Galerkin spectral method for tearing mode instability
Wu Sun(孙武), Jiaqi Wang(王嘉琦), Lai Wei(魏来), Zhengxiong Wang(王正汹), Dongjian Liu(刘东剑), and Qiaolin He(贺巧琳). Chin. Phys. B, 2022, 31(11): 110203.
[5] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[6] Simulations on the multi-shell target ignition driven by radiation pulse in Z-pinch dynamic hohlraum
Shi-Jia Chen(陈诗佳), Yan-Yun Ma(马燕云), Fu-Yuan Wu(吴福源), Xiao-Hu Yang(杨晓虎), Yun Yuan(袁赟), Ye Cui(崔野), and Rafael Ramis. Chin. Phys. B, 2021, 30(11): 115201.
[7] Effect of patterned hydrodynamic slip on electromagnetohydrodynamic flow in parallel plate microchannel
Chun-Hong Yang(杨春红) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2020, 29(11): 114101.
[8] Numerical study on magneto-Rayleigh-Taylor instabilities for thin liner implosions on the primary test stand facility
Xiao-Guang Wang(王小光), Shun-Kai Sun(孙顺凯), De-Long Xiao(肖德龙), Guan-Qiong Wang(王冠琼), Yang Zhang(张扬), Shao-Tong Zhou(周少彤), Xiao-Dong Ren(任晓东), Qiang Xu(徐强), Xian-Bin Huang(黄显宾), Ning Ding(丁宁), Xiao-Jian Shu(束小建). Chin. Phys. B, 2019, 28(3): 035201.
[9] Preliminary investigation on electrothermal instabilities in early phases of cylindrical foil implosions on primary test stand facility
Guanqiong Wang(王冠琼), Delong Xiao(肖德龙), Jiakun Dan(但家坤), Yang Zhang(张扬), Ning Ding(丁宁), Xianbin Huang(黄显宾), Xiaoguang Wang(王小光), Shunkai Sun(孙顺凯), Chuang Xue(薛创), Xiaojian Shu(束小建). Chin. Phys. B, 2019, 28(2): 025203.
[10] Basic features of the multiscale interaction between tearing modes and slab ion-temperature-gradient modes
L Wei(魏来), Z X Wang(王正汹), J Q Li(李继全), Z Q Hu(胡朝清), Y Kishimoto(岸本泰明). Chin. Phys. B, 2019, 28(12): 125203.
[11] Analytical studies on the evolution processes of rarefied deuterium plasma shell Z-pinch by PIC and MHD simulations
Cheng Ning(宁成), Xiao-Qiang Zhang(张小强), Yang Zhang(张扬), Shun-Kai Sun(孙顺凯), Chuang Xue(薛创), Zhi-Xing Feng(丰志兴), Bai-Wen Li(李百文). Chin. Phys. B, 2018, 27(2): 025207.
[12] Magneto-Rayleigh–Taylor instability in compressible Z-pinch liner plasmas
Xue Yang(杨学), De-Long Xiao(肖德龙), Ning Ding(丁宁), Jie Liu(刘杰). Chin. Phys. B, 2017, 26(7): 075202.
[13] Three-dimensional MHD flow over a shrinking sheet: Analytical solution and stability analysis
Sumaira Afzal, Saleem Asghar, Adeel Ahmad. Chin. Phys. B, 2017, 26(1): 014704.
[14] End-on x-ray backlighting experiments for axial diagnostics of wire-array Z-pinch plasma on PPG-1
Shen Zhao(赵屾), Xinlei Zhu(朱鑫磊), Huantong Shi(石桓通), Xiaobing Zou(邹晓兵), Xinxin Wang(王新新). Chin. Phys. B, 2017, 26(1): 015206.
[15] Effects of q-profiles of a weak magnetic shear on energetic ion excited q=1 mode in tokamak plasmas
Ze-Yu Li(李泽宇), Xian-Qu Wang(王先驱), Xiao-Gang Wang(王晓钢). Chin. Phys. B, 2016, 25(1): 015203.
No Suggested Reading articles found!