Abstract In fast Z-pinches, rise time of drive current plays an important role in development of magneto-Rayleigh-Taylor (MRT) instabilities. It is essential for applications of Z-pinch dynamic hohlraum (ZPDH), which could be used for driving inertial confinement fusion (ICF), to understand the scaling of rise time on MRTs. Therefore, a theoretical model for nonlinear development of MRTs is developed according to the numerical analysis. It is found from the model that the implosion distance L=r0-rmc determines the development of MRTs, where r0 is the initial radius and rmc is the position of the accelerating shell. The current rise time τ would affect the MRT development because of its strong coupling with the r0. The amplitude of MRTs would increase with the rise time linearly if an implosion velocity is specified. The effects of the rise time on MRT, in addition, are studied by numerical simulation. The results are consistent with those of the theoretical model very well. Finally, the scaling of the rise time on amplitude of MRTs is obtained for a specified implosion velocity by the theoretical model and numerical simulations.
Xiaoguang Wang(王小光), Guanqiong Wang(王冠琼), Shunkai Sun(孙顺凯), Delong Xiao(肖德龙), Ning Ding(丁宁), Chongyang Mao(毛重阳), and Xiaojian Shu(束小建) Scaling of rise time of drive current on development of magneto-Rayleigh-Taylor instabilities for single-shell Z-pinches 2022 Chin. Phys. B 31 025203
[1] Slutz S A, Bailey J E, Chandler G A et al. 2003 Phys. Plasmas10 1875 [2] Sanford T W L, Lemke R W, Mock R C et al. 2002 Phys. Plasmas9 3573 [3] Rochau G A, Bailey J E, Chandler G A et al. 2007 Plasma Phys. Control. Fusion49 B591 [4] Lash J S, Chandler G A, Cooper G et al. 2000 Comptes Rendus de l'Académie des Sciences-Series IV-Physics1 759 [5] Bailey J E, Chandler G A, Slutz S A et al. 2004 Phys. Rev. Lett.92 085002 [6] Haines M G 2011 Plasma Phys. Control. Fusion53 093001 [7] Ruiz C L, Cooper G W, Slutz S A et al. 2004 Phys. Rev. Lett.93 015001 [8] Bailey J E, Chandler G A, Mancini R. C et al. 2006 Phys. Plasmas13 056301 [9] Slutz S A, Peterson K J, Vesey R A et al. 2006 Phys. Plasmas13 102701 [10] Sanford T W L, Nash T J, Mock R C et al. 2006 Phys. Plasmas13 012701 [11] Rochau G A, Bailey J E, Maron Y et al. 2008 Phys. Rev. Lett.100 125004 [12] Winske D 1996 Phys. Plasmas3 3966 [13] Douglas M R, De Groot J S and Spielman R B 2001 Laser Particle Beams19 527 [14] Miles A R 2009 Phys. Plasmas16 032702 [15] Ryutov D D, Derzon M S and Matzen M K 2000 Rev. Mod. Phys.72 167 [16] de Grouchy P W L, Kusse B R, Banasek J et al. 2018 Phys. Plasmas25 072701 [17] Sun Y B and Piriz A R 2014 Phys. Plasmas21 072708 [18] Sinars D B, Slutz S A, Herrmann M C et al. 2010 Phys. Rev. Lett.105 185001 [19] Peterson D L, Bowers R L, Brownell J H et al. 1996 Phys. Plasmas3 368 [20] Peterson D L, Bowers R L, Matuska W et al. 1999 Phys. Plasmas6 2178 [21] Lemke R W, Bailey J E, Chandler G A et al. 2004 Phys. Plasmas12 012703 [22] Slutz S A 2018 Phys. Plasmas25 082707 [23] Srinivasan B and Hakim A 2018 Phys. Plasmas25 092108 [24] Weis M R, Zhang P, Lau Y Y et al. 2015 Phys. Plasmas22 032706 [25] Huang B, Tomizuka T, Xie B et al. 2013 Phys. Plasmas20 112113 [26] Zhang P, Lau Y Y, Rittersdorf I M et al. 2012 Phys. Plasmas19 022703 [27] Kantsyrev V L, Esaulov A A, Safronova A S et al. 2011 Phys. Rev. E84 046408 [28] Lau Y Y, Zier J C, Rittersdorf I M et al. 2011 Phys. Rev. E83 066405 [29] Zhang Y and Ding N 2008 Chin. Phys. B17 2994 [30] Zhang Y and Ding N 2006 Phys. Plasmas13 022701 [31] Sinars D B, Cuneo M E, Jones B et al. 2005 Phys. Plasmas12 056303 [32] Wu J, Lu Y, Sun F et al. 2018 Plasma Phys. Control. Fusion60 075014 [33] Duan S, Xie W, Cao J et al. 2018 Phys. Plasmas25 042701 [34] Yang X, Xiao D L, Ding N et al. 2017 Chin. Phys. B26 075202 [35] Nash T J, Deeney C, Chandler G A et al. 2004 Phys. Plasmas11 L65 [36] Velikovich A L, Cochran F L and Davis J 1996 Phys. Rev. Lett.77 853 [37] Liberman M A, Groot J S D, Toor A et al. 1999 Physics of high-density Z-pinch plasmas (New York:Springer Science+Business Media) [38] Deeney C, LePell P D, Failor B H et al. 1994 J. Appl. Phys.75 2781 [39] Sze H, Levine J. S, Banister J et al. 2007 Phys. Plasmas14 056307 [40] Kantsyrev V L, Chuvatin A S, Safronova A S et al. 2014 Phys. Plasmas21 031204 [41] Lee Y T and More R M 1984 Phys. Fluids27 1273 [42] Mignone A, Bodo G, Massaglia S et al. 2007 Astrophys. J. Suppl. Ser.170 228 [43] Wang X G, Sun S K, Xiao D L et al. 2019 Chin. Phys. B28 035201 [44] Ryutov D D 2018 Phys. Plasmas25 100501 [45] Douglas M R, Deeney C and Roderick N F 1998 Phys. Plasmas5 4183 [46] Ofer D, Alon U, Shvarts D et al. 1996 Phys. Plasmas3 3073 [47] Hammer J H, Eddleman J L, Springer P T et al. 1996 Phys. Plasmas3 2063 [48] Yager-Elorriaga D A, Steiner A M, Campbell P C et al. 2016 Phys. Plasmas23 124502 [49] Sharp D H 1984 Physica D12 3 [50] Youngs D L 1984 Physica D12 32 [51] Zhou Y 2017 Phys. Rep.720-722 1 [52] Dimonte G and Schneider M 1996 Phys. Rev. E54 3740 [53] Yager-Elorriaga D A, Lau Y Y, Zhang P et al. 2018 Phys. Plasmas25 056307 [54] Oreshkin V I, Baksht R B, Cherdizov R K et al. 2021 Plasma Phys. Control. Fusion63 045022
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.