PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Scaling of rise time of drive current on development of magneto-Rayleigh-Taylor instabilities for single-shell Z-pinches |
Xiaoguang Wang(王小光), Guanqiong Wang(王冠琼), Shunkai Sun(孙顺凯), Delong Xiao(肖德龙)†, Ning Ding(丁宁), Chongyang Mao(毛重阳), and Xiaojian Shu(束小建) |
Institute of Applied Physics and Computational Mathematics, Beijing 100094, China |
|
|
Abstract In fast Z-pinches, rise time of drive current plays an important role in development of magneto-Rayleigh-Taylor (MRT) instabilities. It is essential for applications of Z-pinch dynamic hohlraum (ZPDH), which could be used for driving inertial confinement fusion (ICF), to understand the scaling of rise time on MRTs. Therefore, a theoretical model for nonlinear development of MRTs is developed according to the numerical analysis. It is found from the model that the implosion distance L=r0-rmc determines the development of MRTs, where r0 is the initial radius and rmc is the position of the accelerating shell. The current rise time τ would affect the MRT development because of its strong coupling with the r0. The amplitude of MRTs would increase with the rise time linearly if an implosion velocity is specified. The effects of the rise time on MRT, in addition, are studied by numerical simulation. The results are consistent with those of the theoretical model very well. Finally, the scaling of the rise time on amplitude of MRTs is obtained for a specified implosion velocity by the theoretical model and numerical simulations.
|
Received: 19 April 2021
Revised: 22 July 2021
Accepted manuscript online: 22 August 2021
|
PACS:
|
52.57.Fg
|
(Implosion symmetry and hydrodynamic instability (Rayleigh-Taylor, Richtmyer-Meshkov, imprint, etc.))
|
|
52.59.Qy
|
(Wire array Z-pinches)
|
|
52.30.Cv
|
(Magnetohydrodynamics (including electron magnetohydrodynamics))
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 11975057, 11605013,11775023, and 11705013). |
Corresponding Authors:
Delong Xiao
E-mail: xiao_delong@iapcm.ac.cn
|
Cite this article:
Xiaoguang Wang(王小光), Guanqiong Wang(王冠琼), Shunkai Sun(孙顺凯), Delong Xiao(肖德龙), Ning Ding(丁宁), Chongyang Mao(毛重阳), and Xiaojian Shu(束小建) Scaling of rise time of drive current on development of magneto-Rayleigh-Taylor instabilities for single-shell Z-pinches 2022 Chin. Phys. B 31 025203
|
[1] Slutz S A, Bailey J E, Chandler G A et al. 2003 Phys. Plasmas 10 1875 [2] Sanford T W L, Lemke R W, Mock R C et al. 2002 Phys. Plasmas 9 3573 [3] Rochau G A, Bailey J E, Chandler G A et al. 2007 Plasma Phys. Control. Fusion 49 B591 [4] Lash J S, Chandler G A, Cooper G et al. 2000 Comptes Rendus de l'Académie des Sciences-Series IV-Physics 1 759 [5] Bailey J E, Chandler G A, Slutz S A et al. 2004 Phys. Rev. Lett. 92 085002 [6] Haines M G 2011 Plasma Phys. Control. Fusion 53 093001 [7] Ruiz C L, Cooper G W, Slutz S A et al. 2004 Phys. Rev. Lett. 93 015001 [8] Bailey J E, Chandler G A, Mancini R. C et al. 2006 Phys. Plasmas 13 056301 [9] Slutz S A, Peterson K J, Vesey R A et al. 2006 Phys. Plasmas 13 102701 [10] Sanford T W L, Nash T J, Mock R C et al. 2006 Phys. Plasmas 13 012701 [11] Rochau G A, Bailey J E, Maron Y et al. 2008 Phys. Rev. Lett. 100 125004 [12] Winske D 1996 Phys. Plasmas 3 3966 [13] Douglas M R, De Groot J S and Spielman R B 2001 Laser Particle Beams 19 527 [14] Miles A R 2009 Phys. Plasmas 16 032702 [15] Ryutov D D, Derzon M S and Matzen M K 2000 Rev. Mod. Phys. 72 167 [16] de Grouchy P W L, Kusse B R, Banasek J et al. 2018 Phys. Plasmas 25 072701 [17] Sun Y B and Piriz A R 2014 Phys. Plasmas 21 072708 [18] Sinars D B, Slutz S A, Herrmann M C et al. 2010 Phys. Rev. Lett. 105 185001 [19] Peterson D L, Bowers R L, Brownell J H et al. 1996 Phys. Plasmas 3 368 [20] Peterson D L, Bowers R L, Matuska W et al. 1999 Phys. Plasmas 6 2178 [21] Lemke R W, Bailey J E, Chandler G A et al. 2004 Phys. Plasmas 12 012703 [22] Slutz S A 2018 Phys. Plasmas 25 082707 [23] Srinivasan B and Hakim A 2018 Phys. Plasmas 25 092108 [24] Weis M R, Zhang P, Lau Y Y et al. 2015 Phys. Plasmas 22 032706 [25] Huang B, Tomizuka T, Xie B et al. 2013 Phys. Plasmas 20 112113 [26] Zhang P, Lau Y Y, Rittersdorf I M et al. 2012 Phys. Plasmas 19 022703 [27] Kantsyrev V L, Esaulov A A, Safronova A S et al. 2011 Phys. Rev. E 84 046408 [28] Lau Y Y, Zier J C, Rittersdorf I M et al. 2011 Phys. Rev. E 83 066405 [29] Zhang Y and Ding N 2008 Chin. Phys. B 17 2994 [30] Zhang Y and Ding N 2006 Phys. Plasmas 13 022701 [31] Sinars D B, Cuneo M E, Jones B et al. 2005 Phys. Plasmas 12 056303 [32] Wu J, Lu Y, Sun F et al. 2018 Plasma Phys. Control. Fusion 60 075014 [33] Duan S, Xie W, Cao J et al. 2018 Phys. Plasmas 25 042701 [34] Yang X, Xiao D L, Ding N et al. 2017 Chin. Phys. B 26 075202 [35] Nash T J, Deeney C, Chandler G A et al. 2004 Phys. Plasmas 11 L65 [36] Velikovich A L, Cochran F L and Davis J 1996 Phys. Rev. Lett. 77 853 [37] Liberman M A, Groot J S D, Toor A et al. 1999 Physics of high-density Z-pinch plasmas (New York:Springer Science+Business Media) [38] Deeney C, LePell P D, Failor B H et al. 1994 J. Appl. Phys. 75 2781 [39] Sze H, Levine J. S, Banister J et al. 2007 Phys. Plasmas 14 056307 [40] Kantsyrev V L, Chuvatin A S, Safronova A S et al. 2014 Phys. Plasmas 21 031204 [41] Lee Y T and More R M 1984 Phys. Fluids 27 1273 [42] Mignone A, Bodo G, Massaglia S et al. 2007 Astrophys. J. Suppl. Ser. 170 228 [43] Wang X G, Sun S K, Xiao D L et al. 2019 Chin. Phys. B 28 035201 [44] Ryutov D D 2018 Phys. Plasmas 25 100501 [45] Douglas M R, Deeney C and Roderick N F 1998 Phys. Plasmas 5 4183 [46] Ofer D, Alon U, Shvarts D et al. 1996 Phys. Plasmas 3 3073 [47] Hammer J H, Eddleman J L, Springer P T et al. 1996 Phys. Plasmas 3 2063 [48] Yager-Elorriaga D A, Steiner A M, Campbell P C et al. 2016 Phys. Plasmas 23 124502 [49] Sharp D H 1984 Physica D 12 3 [50] Youngs D L 1984 Physica D 12 32 [51] Zhou Y 2017 Phys. Rep. 720-722 1 [52] Dimonte G and Schneider M 1996 Phys. Rev. E 54 3740 [53] Yager-Elorriaga D A, Lau Y Y, Zhang P et al. 2018 Phys. Plasmas 25 056307 [54] Oreshkin V I, Baksht R B, Cherdizov R K et al. 2021 Plasma Phys. Control. Fusion 63 045022 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|