|
|
Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD |
Xiaotao Hu(胡小涛)1,2, Yimeng Song(宋祎萌)4, Zhaole Su(苏兆乐)1,2, Haiqiang Jia(贾海强)1,2,3, Wenxin Wang(王文新)1,3, Yang Jiang(江洋)1,†, Yangfeng Li(李阳锋)1,‡, and Hong Chen(陈弘)1,3,5,§ |
1 Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China; 4 School of Mathematics and Physics, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, University of Science and Technology Beijing, Beijing 100083, China; 5 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Gallium nitride (GaN) thin film of the nitrogen polarity (N-polar) was grown on C-plane sapphire and misoriented C-plane sapphire substrates respectively by metal-organic chemical vapor deposition (MOCVD). The misorientation angle is off-axis from C-plane toward M-plane of the substrates, and the angle is 2° and 4° respectively. The nitrogen polarity was confirmed by examining the images of the scanning electron microscope before and after the wet etching in potassium hydroxide (KOH) solution. The morphology was studied by the optical microscope and atomic force microscope. The crystalline quality was characterized by the x-ray diffraction. The lateral coherence length, the tilt angle, the vertical coherence length, and the vertical lattice-strain were acquired using the pseudo-Voigt function to fit the x-ray diffraction curves and then calculating with four empirical formulae. The lateral coherence length increases with the misorientation angle, because higher step density and shorter distance between adjacent steps can lead to larger lateral coherence length. The tilt angle increases with the misorientation angle, which means that the misoriented substrate can degrade the identity of crystal orientation of the N-polar GaN film. The vertical lattice-strain decreases with the misorientation angle. The vertical coherence length does not change a lot as the misorientation angle increases and this value of all samples is close to the nominal thickness of the N-polar GaN layer. This study helps to understand the influence of the misorientation angle of misoriented C-plane sapphire on the morphology, the crystalline quality, and the microstructure of N-polar GaN films.
|
Received: 28 September 2021
Revised: 01 November 2021
Accepted manuscript online: 20 November 2021
|
PACS:
|
81.05.Ea
|
(III-V semiconductors)
|
|
81.20.Ka
|
(Chemical synthesis; combustion synthesis)
|
|
87.64.Bx
|
(Electron, neutron and x-ray diffraction and scattering)
|
|
87.64.Aa
|
(Computer simulation)
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 61991441), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33000000), and Youth Innovation Promotion Association of Chinese Academy of Sciences. We thank Yang X A from the Advanced Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, for the experimental work of scanning electron microscope (SEM Sirion). |
Corresponding Authors:
Yang Jiang, Yangfeng Li, Hong Chen
E-mail: jiangyang@iphy.ac.cn;liyangfeng12@mails.ucas.ac.cn;hchen@iphy.ac.cn
|
Cite this article:
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘) Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD 2022 Chin. Phys. B 31 038103
|
[1] Roccato N, Piva F, Santi C D, Brescancin R, Mukherjee K, Buffolo M, Haller C, Carlin J F, Grandjean N, Vallone M, Tibaldi A, Bertazzi F, Goano M, Verzellesi G, Meneghesso G, Zanoni E and Meneghini M 2021 J. Phys. D:Appl. Phys. 54 425105 [2] Ide T, Iida R, Takeuchi T, Wang X L, Takada N and Shimizu M 2021 Jpn. J. Appl. Phys. 60 SBBE01 [3] Pągowska K, Kozubal M, Taube A, Kruszka R, Kamiński M, Kwietniewski N, Juchniewicz M and Szerling A 2021 Mater. Sci. Semicond. Process. 127 105694 [4] Johnson M A L, Fujita S, Rowland W H, Hughes W C, He Y W, El-Masry N A, Cook J W, Schetzina J F, Ren J and Edmond J A 1996 J. Electron. Mater. 25 793 [5] Shen X Q, Okumura H, Furuta K and Nakamura N 2006 Appl. Phys. Lett. 89 171906 [6] Kuo D H and Wu W H 2009 Chem. Vap. Depos. 15 11 [7] Wang Y, Hu F and Hane K 2011 Nanoscale Res. Lett. 6 117 [8] Zhang J, Li S, Xiong H, Tian W, Li Y, Fang Y, Wu Z, Dai J, Xu J, Li X and Chen C 2014 Nanoscale Res. Lett. 9 1 [9] Chen Y, Song H, Li D, Sun X, Jiang H, Li Z, Miao G, Zhang Z and Zhou Y 2014 Mater. Lett. 114 26 [10] Feng Y, Wei H, Yang S, Zhang H, Kong S, Zhao G and Liu X 2014 CrystEngComm 16 7525 [11] Kadys A, Malinauskas T, Grinys T, Dmukauskas M, Mickevičius J, Aleknavičius J, Tomašiūnas R, Selskis A, Kondrotas R, Stanionytė S, Lugauer H and Strassburg M 2015 J. Electron. Mater. 44 188 [12] Nakamura S, Senoh M and Mukai T 1993 Jpn. J. Appl. Phys. 32 L8 [13] Asif Khan M, Bhattarai A, Kuznia J N and Olson D T 1993 Appl. Phys. Lett. 63 1214 [14] Nakamura S, Masayuki S, Nagahama S, Iwasa N, Yamada T, Matsushita T, Kiyoku H and Sugimoto Y 1996 Jpn. J. Appl. Phys. 35 L74 [15] Song Y, He Y, Li Y, Wei H, Qiu P, Huang Q, He Z, Die J, Peng M and Zheng X 2021 Cryst. Growth Des. 21 1778 [16] Li Y, Deng Z, Ma Z, Wang L, Jia H, Wang W, Jiang Y and Chen H 2019 J. Appl. Phys. 126 095705 [17] Li Y, Yan S, Hu X, Song Y, Deng Z, Du C, Wang W, Ma Z, Wang L, Jia H, Wang W, Zhou J, Jiang Y and Chen H 2020 Superlattices Microstruct. 145 106606 [18] Wong M H and Mishra U K 2019 Semiconductors and Semimetals 102 329 [19] Rouviére J L, Arlery M, Niebuhr R, Bachem K H and Briot O 1997 Mater. Sci. Eng. B 43 161 [20] Matsuoka T, Kobayashi Y, Takahata H, Mitate T, Mizuno S, Sasaki A, Yoshimoto M, Ohnishi T and Sumiya M 2006 Phys. Status Solidi Basic Res. 243 1446 [21] Keller S, Fichtenbaum N A, Wu F, Brown D, Rosales A, Denbaars S P, Speck J S and Mishra U K 2007 J. Appl. Phys. 102 083546 [22] de Keijser T H, Langford J I, Mittemeijer E J and Vogels A B P 1982 J. Appl. Crystallogr. 15 308 [23] Metzger T, Höpler R, Born E, Ambacher O, Stutzmann M, Stömmer R, Schuster M, Göbel H, Christiansen S, Albrecht M and Strunk H P 1998 Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop. 77 1013 [24] de Keijser T, Mittemeijer E J and Rozendaal H C F 1983 J. Appl. Crystallogr. 16 309 [25] Chierchia R, Böttcher T, Heinke H, Einfeldt S, Figge S and Hommel D 2003 J. Appl. Phys. 93 8918 [26] Beccard R, Protzmann H, Schmitz D A, Strauch G, Heuken M and Juergensen H 1998 Proc. SPIE, Optoelectronic Materials and Devices 3419 70 [27] Ng H M, Weimann N G and Chowdhury A 2003 J. Appl. Phys. 94 650 [28] Dunn C G and Koch E F 1957 Acta Metallurgica 5 548 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|