INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
A DFT/TD-DFT study of effect of different substituent on ESIPT fluorescence features of 2-(2'-hydroxyphenyl)-4-chloro- methylthiazole derivatives |
Shen-Yang Su(苏申阳)†, Xiu-Ning Liang(梁秀宁), and Hua Fang(方华) |
Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China |
|
|
Abstract Based on density functional theory (DFT) and time-dependent density functional theory (TD-DFT), the effects of substituent on the excited-state intramolecular proton transfer (ESIPT) process and photophysical properties of 2-(2'-hydroxyphenyl)-4-chloromethylthiazole (HCT) are studied. The electron-donating group (CH3, OH) and electron-withdrawing group (CF3, CHO) are introduced to analyze the changes of intramolecular H-bond, the frontier molecular orbitals, the absorption/fluorescence spectra, and the energy barrier of ESIPT process. The calculation results indicate that electron-donating group strengthens the intramolecular H-bond in the S1 state, and leads to an easier ESIPT process. The electron-withdrawing group weakens the corresponding H-bond and makes ESIPT process a little harder. Different substituents also affect the photophysical properties of HCT. The electron-withdrawing group (CF3, CHO) has a little effect on electronic spectra. The electron-donating group (CH3, OH) red-shifts both the absorption and fluorescence emission peaks of HCT, respectively, which causes the Stokes shift to increase.
|
Received: 15 May 2021
Revised: 15 May 2021
Accepted manuscript online: 27 August 2021
|
PACS:
|
82.39.Jn
|
(Charge (electron, proton) transfer in biological systems)
|
|
31.15.ee
|
(Time-dependent density functional theory)
|
|
87.15.ht
|
(Ultrafast dynamics; charge transfer)
|
|
Corresponding Authors:
Shen-Yang Su
E-mail: susanfang20@gmail.com
|
Cite this article:
Shen-Yang Su(苏申阳), Xiu-Ning Liang(梁秀宁), and Hua Fang(方华) A DFT/TD-DFT study of effect of different substituent on ESIPT fluorescence features of 2-(2'-hydroxyphenyl)-4-chloro- methylthiazole derivatives 2022 Chin. Phys. B 31 038202
|
[1] Horke D A, Watte H M, Smith A D, Jager E, Springate E, Alexander O, Cacho C, Chapman R T and Minns R S 2016 Phys. Rev. Lett. 117 163002 [2] Dommett M, Rivera M and Crespo-Otero R 2017 J. Phys. Chem. Lett. 8 6148 [3] Zhou P W and Han K L 2018 Acc. Chem. Res. 51 1681 [4] Chipem F A S, Mishra A and Krishnamoorthy G 2012 Phys. Chem. Chem. Phys. 14 8775 [5] Zhou H Q, Li L, Zhao Y, Wang H G and Zheng Z 2019 Spectrochim. Acta, Part A 208 32 [6] Li C Z, Ma C, Li D L and Liu Y F 2016 J. Lumin. 172 29 [7] Weller A 1956 Zeitschrift für Elektrochemie 60 1144 [8] Peng X J, Wu Y K, Fan J L, Tian M Z and Han K L 2005 J. Org. Chem. 70 10524 [9] Wu J S, Liu W M, Ge J C, Zhang H Y and Wang P F 2011 Chem. Soc. Rev. 40 3483 [10] Heller A and Williams 1970 J. Phys. Chem. 74 4473 [11] Parthenopoulos D A, McMorrow D P and Kasha M 1991 J. Phys. Chem. 95 2668 [12] Kim J S and Quang D T 2007 Chem. Rev. 107 3780 [13] Park S, Kwon J E, Kim S H, Seo J, Chung K, Park S Y, Jang D J, Medina B M, Gierschner J and Park S Y 2009 J. Am. Chem. Soc. 131 14043 [14] Sedgwick A C, Dou W T, Jiao J B, Wu L, Williams G T, Jenkins A T A, Bull S D, Sessler J L, He X P and James T D 2018 J. Am. Chem. Soc. 140 14267 [15] Sedgwick A C, Wu L, Han H H, Bull S D, He X P, James T D, Sessler J L, Tang B Z, Tian H and Yoon J 2018 Chem. Soc. Rev. 47 8842 [16] Tang K C, Chang M J, Lin T Y, Pan H A, Fang T C, Chen K Y, Hung W Y, Hsu Y H and Chou P T 2011 J. Am. Chem. Soc. 133 17738 [17] Sun C F, Li H, Yin H, Li Y Z and Shi Y 2018 J. Mol. Liq. 269 650 [18] Tang Z, Wei H W and Zhou P W 2020 J. Mol. Liq. 301 112415 [19] Han J H, Cao B F, Li Y, Zhou Q, Sun C F, Li B, Yin H and Shi Y 2020 Spectrochim. Acta A 231 118086 [20] Yordanov D, Deneva V, Georgiev A, Crochet A, Fromm K M and Antonov L 2020 Spectrochim. Acta Part A 237 118416 [21] Zhang N N, Liu D B, Chen W F, Liu X and Yan J Y 2020 Comput. Theor. Chem. 1185 112898 [22] Qi Y T, Wang Y, Tang Z, Liu J Y, Hou Y M, Gao Z Q, Tian J and Fei X 2020 J. Mol. Liq. 314 113614 [23] Cao B F, Han J H, Zhou Q, Sun C F, Li Y, Li B, Yin H and Shi Y 2020 J. Mol. Liq. 303 112627 [24] Jia L F and Liu Y F 2020 Spectrochim. Acta Part A 242 118719 [25] Yang D P, Jia M, Zhang Q L and Wang Y S 2020 J. Lumin. 219 116913 [26] Watwiangham A, Roongcharoen T and Kungwan N 2020 J. Photochem. Photobio. A 389 112267 [27] Ma Y Z, Yang Y F, Lan R F and Li Y Q 2017 J. Phys. Chem. C 121 14779 [28] Takagi K, Yamada Y, Fukuda R, Ehara M and Takeuchi D 2018 New J. Chem. 42 5923 [29] Song Y Z, Liu S S, Lu J J, Zhang H, Zhang C Z and Du J 2019 Chin. Phys. B 28 093102 [30] Zhang X, Han J H, Li Y, Sun C F, Su X, Shi Y and Yin H 2020 Chin. Phys. B 29 038201 [31] Zhang N N, Liu G J, Yan J Y, Zhang T T and Liu X 2020 Dyes Pigm. 175 108128 [32] Kim B Y, Kim H S and Helal A 2015 Sensors Actuat. B Chem. 206 430 [33] Lim C, An M, Seo H, Huh J H, Pandith A, Helal A and Kim H S 2017 Sensors Actuat. B Chem. 241 789 [34] Helal A, Kim S H and Kim H S 2010 Tetrahedron 66 9925 [35] Helal A, Kim S H and Kim H S 2013 Tetrahedron 69 6095 [36] Helal A, Kim S B and Kim H S 2011 Bull. Kor. Chem. Soc. 32 3123 [37] Seo H, An M, Kim B Y, Choi J H, Helal A and Kim H S 2017 Tetrahedron 73 4684 [38] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Rev. D.01 (Gaussian, Inc., Wallingford, 2009) [39] Becke A D 1988 Phys. Rev. A 38 3098 [40] Stephens P J, Devlin F J, Chabalowski C F and Frisch M J 1994 J. Phys. Chem. 98 11623 [41] Perdew J P 1991 Electronic structure of solids' 91, eds:Ziesche P and Eschrig H (Berlin:Akademie Verlag) [42] Cancés E, Mennucci B and Tomasi J 1997 J. Chem. Phys. 107 3032 [43] Cossi M, Barone V, Mennucci B and Tomasi J 1998 Chem. Phys. Lett. 286 253 [44] Mennucci B and Tomasi J 1997 J. Chem. Phys. 106 5151 [45] Lu T and Chen F W 2012 J. Comput. Chem. 33 580 [46] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graph. Model. 14 33 [47] Liang X N and Fang H 2021 Photochem. Photobio. Sci. 20 533 [48] Zhao G J and Han K L 2008 Biophys. J. 94 38 [49] Zhao J F, Yao H B, Liu J Y and Hoffmann M R 2015 J. Phys. Chem. A 119 681 [50] Yu F B, Li P, Wang B S and Han K L 2013 J. Am. Chem. Soc. 135 7674 [51] Bader R F W and Essén H 1984 J. Chem. Phys. 80 1943 [52] Stasyuk A J, Cyranski M K, Gryko D T and Solá M 2015 J. Chem. Theory Comput. 11 1046 [53] Johnson E R, Keinan S, Sánchez P M, GarcíaJ C, Cohen A J and Yang W 2010 J. Am. Chem. Soc. 132 6498 [54] García J C, Johnson E R, Keinan S, Chaudret R, Piquemal J P, Beratan D N and Yang W T 2011 J. Chem. Theory Comput. 7 625 [55] Zhao G J, Northrop B H, Han K L and Stang P J 2010 J. Phys. Chem. A 114 9007 [56] Zhao X H, Liu Y F, Zhou L C, Li Y Z and Chen M D 2010 J. Lumin. 130 1431 [57] Zhao G J and Han K L 2012 Acc. Chem. Res. 45 404 [58] Zhao G J, Liu J Y, Zhou L C and Han K L 2007 J. Phys. Chem. B 111 8940 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|