Decoding the electron dynamics in high-order harmonic generation from asymmetric molecular ions in elliptically polarized laser fields
Cai-Ping Zhang(张彩萍)1,2 and Xiang-Yang Miao(苗向阳)1,2,†
1 College of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China; 2 Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, Shanxi Normal University, Taiyuan 030031, China
Abstract The high-order harmonic generation from an asymmetric molecular ion is theoretically investigated based on the Born-Oppenheimer model with two-dimensional electron dynamics. It is shown that the harmonic intensity changes periodically in elliptically polarized laser fields. The periodical character is ellipticity-dependent. By establishing the physical image, the periodicity of the harmonic intensity can be ascribed to the contributions of the ground state and the excited state. Furthermore, the electron dynamics from different electronic states can be selected via combining the elliptically polarized laser field with a static electric field. The harmonics dominated either by ground state or excited state are emitted once in an optical cycle in the combined laser field.
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 11974229, 11404204, and 11947002) and the Scientific and Technological Innovation Program of Higher Education Institutions in Shanxi, China (Grant No. 2021L255).
Cai-Ping Zhang(张彩萍) and Xiang-Yang Miao(苗向阳) Decoding the electron dynamics in high-order harmonic generation from asymmetric molecular ions in elliptically polarized laser fields 2022 Chin. Phys. B 31 043301
[1] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163 [2] Zhang J, Ge X L, Wang T, Xu T T, Guo J and Liu X S 2015 Phys. Rev. A92 013418 [3] Li L, Lan P, Zhu X, Huang T, Zhang Q, Lein M and Lu P X 2019 Phys. Rev. Lett. 122 193901 [4] Zhang H D, Liu X W, Jin F C, Zhu M, Yang S D and Dong W H 2021 Chin. Phys. Lett. 38 063201 [5] Yu C, Jiang S C and Lu R F 2019 Adv. Phys. X4 1562982 [6] Popmintchev T, Chen M C, Arpin P, Murane M M and Kapteyn H C 2010 Nat. Photon. 4 822 [7] Wang X W, Wang L, Xiao F, Zhang D W, Lu Z H, Yuan J M and Zhao Z X 2020 Chin. Phys. Lett. 37 023201 [8] Haessler S, Caillat J, Boutu W, Giovanetti-Teixeira G, Ruchon T, Auguste T, Diveki Z, Breger P, Maquet A, Carré B, Taïeb R and Saliéres P 2010 Nat. Phys. 6 200 [9] Itatani J, Levesque J, Zeidler D, Niikura H, Pépin H, Kieffer J C, Corkum P B and Villeneuve D M 2004 Nature432 867 [10] Li J B, Zhang X, Fu S L, Feng Y K, Hu B T and Du H C 2019 Phys. Rev. A100 043404 [11] Yu C, Jiang S C, Wu T, Yuan G L, Wang Z W, Jin C and Lu R F 2018 Phys. Rev. B98 085439 [12] Shao T J, Xu Y, Huang X H and Bian X B 2019 Phys. Rev. A99 013432 [13] Wang Z W, Jiang S C, Yuan G L, Wu T, Li C, Qian C, Jin C, Yu C, Hua W J and Lu R F 2019 Sci. China Phys. Mech. Astron. 63 257311 [14] Lewenstein M, Balcou P, Ivanov M Y, L'Huillier A and Corkum P B 1994 Phys. Rev. A49 2117 [15] Han Y C and Madsen L B 2010 J. Phys. B43 225601 [16] Zhang C P, Xia C L, Jia X F and Miao X Y 2017 Sci. Rep. 7 10359 [17] Avanaki K N and Chu S I 2014 Phys. Rev. A26 033425 [18] Avanaki K N and Jooya H Z 2015 Phys. Rev. A92 063811 [19] Kamta G L and Bandrauk A D 2005 Phys. Rev. Lett. 94 203003 [20] Ho T S, Laughlin C and Chu S I 1985 Phys. Rev. A32 122 [21] Shi Y Z, Zhang B, Li W Y, Yu S J and Chen Y J 2017 Phys. Rev. A95 033406 [22] Chen Y J and Zhang B 2012 Phys. Rev. A86 023415 [23] Ben-Itzhak I, Chen Z, Esry B D, Gertner I I, Heber O, Lin C D and Rosner B 1994 Phys. Rev. A49 1774 [24] Bian X B and Bandrauk A D 2012 Phys. Rev. A86 053417 [25] Bian X B and Bandrauk A D 2011 Phys. Rev. A83 023414 [26] Miao X Y and Zhang C P 2014 Phys. Rev. A89 033410 [27] Miao X Y and Zhang C P 2014 Laser Phys. Lett. 11 115301 [28] Miao X Y and Du H N 2013 Phys. Rev. A87 053403 [29] Frolov M V, Manakov N L and Sarantseva T S 2012 Phys. Rev. 86 063406 [30] Lu R F, Zhang P Y and Han K L 2008 Phys. Rev. E77 066701 [31] Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201 [32] Hu J, Han K L and He G Z 2005 Phys. Rev. Lett. 95 123001 [33] Campos J A, Nascimento D L, Cavalcante D T, Fonseca A L A and Nunes A O C 2006 Int. J. Quantum Chem. 106 2587 [34] Zhang C P, Xia C L, Jia X F and Miao X Y 2016 Opt. Express24 20297 [35] Yuan K J and Bandrauk A D 2011 Phys. Rev. A83 063422 [36] Huismans Y, Rouźe A, Gijsbertsen A et al. 2011 Science331 61
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.