|
|
Decoding the electron dynamics in high-order harmonic generation from asymmetric molecular ions in elliptically polarized laser fields |
Cai-Ping Zhang(张彩萍)1,2 and Xiang-Yang Miao(苗向阳)1,2,† |
1 College of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China; 2 Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, Shanxi Normal University, Taiyuan 030031, China |
|
|
Abstract The high-order harmonic generation from an asymmetric molecular ion is theoretically investigated based on the Born-Oppenheimer model with two-dimensional electron dynamics. It is shown that the harmonic intensity changes periodically in elliptically polarized laser fields. The periodical character is ellipticity-dependent. By establishing the physical image, the periodicity of the harmonic intensity can be ascribed to the contributions of the ground state and the excited state. Furthermore, the electron dynamics from different electronic states can be selected via combining the elliptically polarized laser field with a static electric field. The harmonics dominated either by ground state or excited state are emitted once in an optical cycle in the combined laser field.
|
Received: 15 August 2021
Revised: 06 September 2021
Accepted manuscript online: 24 September 2021
|
PACS:
|
33.80.Rv
|
(Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states))
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 11974229, 11404204, and 11947002) and the Scientific and Technological Innovation Program of Higher Education Institutions in Shanxi, China (Grant No. 2021L255). |
Corresponding Authors:
Xiang-Yang Miao
E-mail: sxxymiao@126.com
|
Cite this article:
Cai-Ping Zhang(张彩萍) and Xiang-Yang Miao(苗向阳) Decoding the electron dynamics in high-order harmonic generation from asymmetric molecular ions in elliptically polarized laser fields 2022 Chin. Phys. B 31 043301
|
[1] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163 [2] Zhang J, Ge X L, Wang T, Xu T T, Guo J and Liu X S 2015 Phys. Rev. A 92 013418 [3] Li L, Lan P, Zhu X, Huang T, Zhang Q, Lein M and Lu P X 2019 Phys. Rev. Lett. 122 193901 [4] Zhang H D, Liu X W, Jin F C, Zhu M, Yang S D and Dong W H 2021 Chin. Phys. Lett. 38 063201 [5] Yu C, Jiang S C and Lu R F 2019 Adv. Phys. X 4 1562982 [6] Popmintchev T, Chen M C, Arpin P, Murane M M and Kapteyn H C 2010 Nat. Photon. 4 822 [7] Wang X W, Wang L, Xiao F, Zhang D W, Lu Z H, Yuan J M and Zhao Z X 2020 Chin. Phys. Lett. 37 023201 [8] Haessler S, Caillat J, Boutu W, Giovanetti-Teixeira G, Ruchon T, Auguste T, Diveki Z, Breger P, Maquet A, Carré B, Taïeb R and Saliéres P 2010 Nat. Phys. 6 200 [9] Itatani J, Levesque J, Zeidler D, Niikura H, Pépin H, Kieffer J C, Corkum P B and Villeneuve D M 2004 Nature 432 867 [10] Li J B, Zhang X, Fu S L, Feng Y K, Hu B T and Du H C 2019 Phys. Rev. A 100 043404 [11] Yu C, Jiang S C, Wu T, Yuan G L, Wang Z W, Jin C and Lu R F 2018 Phys. Rev. B 98 085439 [12] Shao T J, Xu Y, Huang X H and Bian X B 2019 Phys. Rev. A 99 013432 [13] Wang Z W, Jiang S C, Yuan G L, Wu T, Li C, Qian C, Jin C, Yu C, Hua W J and Lu R F 2019 Sci. China Phys. Mech. Astron. 63 257311 [14] Lewenstein M, Balcou P, Ivanov M Y, L'Huillier A and Corkum P B 1994 Phys. Rev. A 49 2117 [15] Han Y C and Madsen L B 2010 J. Phys. B 43 225601 [16] Zhang C P, Xia C L, Jia X F and Miao X Y 2017 Sci. Rep. 7 10359 [17] Avanaki K N and Chu S I 2014 Phys. Rev. A 26 033425 [18] Avanaki K N and Jooya H Z 2015 Phys. Rev. A 92 063811 [19] Kamta G L and Bandrauk A D 2005 Phys. Rev. Lett. 94 203003 [20] Ho T S, Laughlin C and Chu S I 1985 Phys. Rev. A 32 122 [21] Shi Y Z, Zhang B, Li W Y, Yu S J and Chen Y J 2017 Phys. Rev. A 95 033406 [22] Chen Y J and Zhang B 2012 Phys. Rev. A 86 023415 [23] Ben-Itzhak I, Chen Z, Esry B D, Gertner I I, Heber O, Lin C D and Rosner B 1994 Phys. Rev. A 49 1774 [24] Bian X B and Bandrauk A D 2012 Phys. Rev. A 86 053417 [25] Bian X B and Bandrauk A D 2011 Phys. Rev. A 83 023414 [26] Miao X Y and Zhang C P 2014 Phys. Rev. A 89 033410 [27] Miao X Y and Zhang C P 2014 Laser Phys. Lett. 11 115301 [28] Miao X Y and Du H N 2013 Phys. Rev. A 87 053403 [29] Frolov M V, Manakov N L and Sarantseva T S 2012 Phys. Rev. 86 063406 [30] Lu R F, Zhang P Y and Han K L 2008 Phys. Rev. E 77 066701 [31] Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201 [32] Hu J, Han K L and He G Z 2005 Phys. Rev. Lett. 95 123001 [33] Campos J A, Nascimento D L, Cavalcante D T, Fonseca A L A and Nunes A O C 2006 Int. J. Quantum Chem. 106 2587 [34] Zhang C P, Xia C L, Jia X F and Miao X Y 2016 Opt. Express 24 20297 [35] Yuan K J and Bandrauk A D 2011 Phys. Rev. A 83 063422 [36] Huismans Y, Rouźe A, Gijsbertsen A et al. 2011 Science 331 61 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|