|
|
Debye-screening effect on electron-impact excitation of helium-like Al11+ and Fe24+ ions |
Yu-Long Ma(马玉龙)1,2, Ling Liu(刘玲)2,†, Lu-You Xie(颉录有)1, Yong Wu(吴勇)2,3,‡, Deng-Hong Zhang(张登红)1, Chen-Zhong Dong(董晨钟)1, Yi-Zhi Qu(屈一至)4, and Jian-Guo Wang(王建国)2 |
1 College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China; 2 Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China; 3 Center for Applied Physics and Technology, Peking University, Beijing 100084, China; 4 School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Debye-screening effects on the electron-impact excitation (EIE) processes for the dipole-allowed transition 1s$^{2}$ $^{1}{\rm S} \to 1$s2p $^{1}$P in He-like Al$^{11+}$ and Fe$^{24+}$ ions are investigated using the fully relativistic distorted-wave methods with the-Hückel (DH) model potential. Debye-screening effects on the continuum-bound (CB) interaction and target ion are discussed, both of which result in reduction of EIE cross sections. This reduction due to screening on the CB interaction is dominant. The non-spherical and spherical DH potentials are adopted for considering the screening effect on the CB interaction. It is found that the spherical DH potential could significantly overestimate the influence of plasma screening on EIE cross sections for multielectron He-like ions.
|
Received: 26 July 2021
Revised: 23 September 2021
Accepted manuscript online: 11 October 2021
|
PACS:
|
34.50.Fa
|
(Electronic excitation and ionization of atoms (including beam-foil excitation and ionization))
|
|
52.20.-j
|
(Elementary processes in plasmas)
|
|
52.20.Fs
|
(Electron collisions)
|
|
Fund: Project supported by the Science Challenge Project (Grant No. TZ2016001), the National Key Research and Development Program of China (Grants Nos. 2017YFA0403200 and 2017YFA0402300), the Funds for Innovative Fundamental Research Group Project of Gansu Province, China (Grant No. 20JR5RA541), and the National Natural Science Foundation of China (Grants Nos. 11774037 and 12064041). |
Corresponding Authors:
Ling Liu, Yong Wu
E-mail: liu_ling@iapcm.ac.cn;wu_yong@iapcm.ac.cn
|
Cite this article:
Yu-Long Ma(马玉龙), Ling Liu(刘玲), Lu-You Xie(颉录有), Yong Wu(吴勇), Deng-Hong Zhang(张登红), Chen-Zhong Dong(董晨钟), Yi-Zhi Qu(屈一至), and Jian-Guo Wang(王建国) Debye-screening effect on electron-impact excitation of helium-like Al11+ and Fe24+ ions 2022 Chin. Phys. B 31 043401
|
[1] Heeter R F, Hansen S B, Fournier K B, Foord M E, Froula D H, Mackinnon A J, May M J, Schneider M B and Young B K F 2007 Phys. Rev. Lett. 99 195001 [2] Gao C, Jin F, Zeng J and Yuan J 2013 New J. Phys. 15 015022 [3] Chintan S, Pedro A, René S, Sven B, José R C L U and Stanislav T 2018 Astrophys. J. Suppl. Ser. 234 27 [4] Shah C, Amaro P, Steinbrügge R, Beilmann C, Bernitt S, Fritzsche S, Surzhykov A, Crespo López-Urrutia J R and Tashenov S 2016 Phys. Rev. E 93 061201 [5] Belkhiri M and Poirier M 2014 Phys. Rev. A 90 062712 [6] Ichimaru S 1982 Rev. Mod. Phys. 54 1017 [7] Whitten B L, Lane N F and Weisheit J C 1984 Phys. Rev. A 29 945 [8] Belkhiri M and Fontes C J 2016 J. Phys. B 49 175002 [9] Zhang D H, Xie L Y, Jiang J and Dong C Z 2019 Chin. Phys. Lett. 36 083401 [10] Weisheit J C 1989 Adv. At. Mol. Phys. 25 101 [11] Murillo M S and Weisheit J C 1998 Phys. Rep. 302 1 [12] Janev R K, Zhang S and Wang J 2016 Matter Radiat. Extremes 1 237 [13] Yoon J S and Jung Y D 1996 Phys. Plasmas 3 3291 [14] Ma J, Wang Y C, Zhou Y J and Wang H 2018 Chin. Phys. B 27 013401 [15] Zhang S B, Qi Y Y, Qu Y Z, Chen X J and Wang J G 2010 Chin. Phys. Lett. 27 013401 [16] Hatton G J, Lane N F and Weisheit J C 1981 J. Phys. B 14 4879 [17] Scheibner K, Weisheit J C and Lane N F 1987 Phys. Rev. A 35 1252 [18] Li B W, Dong C Z, Jiang J and Wang J G 2010 Eur. Phys. J. D 59 201 [19] Jiang J, Dong C Z and Xie L Y 2014 Chin. Phys. Lett. 31 023401 [20] Chen Z B, Dong C Z, Jiang J and Xie L Y 2015 J. Phys. B 48 144030 [21] Chen Z 2018 Phys. Plasmas 25 052105 [22] Qi Y Y, Ye D D, Wang J G and Qu Y Z 2015 Chin. Phys. B 24 033403 [23] Pindzola M S, Loch S D, Colgan J and Fontes C J 2008 Phys. Rev. A 77 062707 [24] Zhang S B, Wang J G and Janev R K 2010 Phys. Rev. Lett. 104 023203 [25] Zhang S B, Wang J G and Janev R K 2010 Phys. Rev. A 81 032707 [26] Zhang S B, Wang J G, Janev R K and Chen X J 2011 Phys. Rev. A 83 032724 [27] Zammit M C, Fursa D V and Bray I 2010 Phys. Rev. A 82 052705 [28] Zammit M C, Fursa D V and Bray I 2012 Chem. Phys. 398 214 [29] Zammit M C, Fursa D V, Bray I and Janev R K 2011 Phys. Rev. A 84 052705 [30] Zhou F Y, Qu Y Z, Gao J W, Ma Y L, Wu Y and Wang J G 2021 Commun. Phys. 4 148 [31] Stillman C R, Nilson P M, Ivancic S T, Golovkin I E, Mileham C, Begishev I A and Froula D H 2010 Phys. Rev. E 95 063204 [32] Jiang J, Dong C Z, Xie L Y and Wang J G 2008 Phys. Rev. A 78 022709 [33] Zhang H L, Sampson D H and Clark R E H 1990 Phys. Rev. A 41 198 [34] Bar-Shalom A, Klapisch M and Oreg J 1988 Phys. Rev. A 38 1773 [35] Xie L Y, Wang J G, Janev R K, Qu Y Z and Dong C Z 2012 Eur. Phys. J. D 66 125 [36] Dyall K G, Grant I P, Johnson C T, Parpia F A and Plummer E P 1989 Comput. Phys. Commun. 55 425 [37] Jönsson P, He X, Froese Fischer C and Grant I P 2007 Comput. Phys. Commun. 177 597 [38] Saha B and Fritzsche S 2006 Phys. Rev. E 73 036405 [39] Fritzsche S, Aksela H, Dong C Z, Heinäsmäki S and Sienkiewicz J E 2003 Nucl. Instrum. Methods Phys. Res. B 205 93 [40] Ong W and Russek A 1978 Phys. Rev. A 17 120 [41] Chang T N and Fang T K 2013 Phys. Rev. A 88 023406 [42] Qi Y Y, Wang J G and Janev R K 2009 Phys. Rev. A 80 063404 [43] Kramida A, Ralchenko Yu, Reader J and NIST ASD Team 2020 NIST Atomic Spectra Database (ver. 5.8), May 28, 2021, National Institute of Standards and Technology, Gaithersburg, MD [44] Kieffer J C, Matte J P, Chaker M, Beaudoin Y, Chien C Y, Coe S, Mourou G, Dubau J and Inal M K 1993 Phys. Rev. E 48 4648 [45] Hakel P, Mancini R C, Harris C, Neill P, Beiersdorfer P, Csanak G and Zhang H L 2007 Phys. Rev. A 76 012716 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|