Enhance sensitivity to illumination and synchronization in light-dependent neurons
Ying Xie(谢盈)1, Zhao Yao(姚昭)1, Xikui Hu(胡锡奎)2, and Jun Ma(马军)1,2,†
1 Department of Physics, Lanzhou University of Technology, Lanzhou 730050, China; 2 School of Science, Chongqing University of Posts and Telecommunications, Chongqing 430065, China
Abstract When a phototube is activated to connect a neural circuit, the output voltage becomes sensitive to external illumination because the photocurrent across the phototube can be controlled by external electromagnetic wave. The channel currents from different branch circuits have different impacts on the outputs voltage of the neural circuit. In this paper, a phototube is incorporated into different branch circuits in a simple neural circuit, and then a light-controlled neuron is obtained for further nonlinear analysis. Indeed, the phototube is considered as exciting source when it is activated by external illumination, and two kinds of light-sensitive neurons are obtained when the phototube is connected to capacitor or induction coil, respectively. Electric synapse coupling is applied to detect possible synchronization between two functional neurons, and the energy consumption along the coupling channel via resistor is estimated. The analog circuits for the two kinds of light-sensitive neurons are supplied for further confirmation by using Multisim. It is found that two light-sensitive neurons and neural circuits can be synchronized by taming the coupling intensity carefully. It provides possible clues to understand the synchronization mechanism for eyes and artificial sensors which are sensitive to illumination. Finally, a section for open problems is supplied for further investigation about its collective behaviors in the network with/without synapse coupling.
(Spatiotemporal pattern formation in cellular populations)
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12062009).
Corresponding Authors:
Jun Ma
E-mail: hyperchaos@163.com
Cite this article:
Ying Xie(谢盈), Zhao Yao(姚昭), Xikui Hu(胡锡奎), and Jun Ma(马军) Enhance sensitivity to illumination and synchronization in light-dependent neurons 2021 Chin. Phys. B 30 120510
[1] Tang J, Zhang J, Ma J, Zhang G Y and Yang X Q 2017 Sci. China Technol. Sci.60 1011 [2] Tabi C B, Etémé A S, Mohamadou A and Kofané T C 2019 Chaos, Solitons & Fractals123 116 [3] Kundu S, Majhi S and Ghosh D 2019 Nonlinear Dyn.98 1659 [4] Baysal V and Yilmaz E 2020 Physica A537 122733 [5] Shaverdi Y, Panahi S, Kapitaniak T and Jafari S 2019 Eur. Phys. J. Spec. Top.228 2405 [6] Ditlevsen S and Greenwood P 2013 J. Math. Biol.67 239 [7] Mondal A, Upadhyay R K, Ma J, Yadav B K, Sharma S K and Mondal A 2019 Cogn. Neurodyn.13 393 [8] Lin H, Wang C, Sun Y and Wang Y 2020 Nonlinear Dyn.100 3667 [9] Shilnikov A L and Rulkov N F 2004 Phys. Lett. A328 177 [10] Nobukawa S, Nishimura H, Yamanishi T and Liu J Q 2015 PloS One10 e0138919 [11] Ascoli A, Slesazeck S, Mähne H, Tetzlaff R and Mikolajick T 2015 IEEE Tr. Circ. Syst. I62 1165 [12] Kvatinsky S, Friedman E, Kolodny A and Weiser U 2013 IEEE Circ. Syst. Mag.13 17 [13] Bao H, Chen M, Wu H G and Bao B C 2019 Sci. China Technol. Sci.63 603 [14] Makhlin Y, Schön G and Shnirman A 2001 Rev. Mod. Phys.73 357 [15] Sickinger H, Lipman A, Weides M, Mints R G, Kohlstedt H, Koelle D, Kleiner R and Goldobin E 2012 Phys. Rev. Lett.109 107002 [16] Zhang Y, Zhou P, Tang J and Ma J 2021 Chin. J. Phys.71 72 [17] Zhang Y, Xu Y, Yao Z and Ma J 2020 Nonlinear Dyn.102 1849 [18] Zhang Y, Wang C, Tang J, Ma J and Ren G D 2020 Sci. China Technol. Sci.63 2328 [19] Zhang H, Wang L, Zhang P, Zhang X D and Ma J 2021 Chin. Phys. B30 038702 [20] Kafraj M S, Parastesh F and Jafari S 2020 Chaos, Solitons & Fractals137 109782 [21] Feltz A and Pölzl W 2000 J. Euro. Cera. Soc.20 2353 [22] Yakovleva M, Bhand S and Danielsson B 2013 Analytica Chimica Acta766 1 [23] Xu Y, Liu M, Zhu Z and Ma J 2020 Chin. Phys. B29 098704 [24] Nakayama T 1985 Jpn. J. Physiol.35 375 [25] Madrid R, De La Peña E, Donovan-Rodriguez T, Belmonte C and Viana F 2009 J. Neurosci.29 3120 [26] Liu Y, Xu W, Ma J, Alzahrani F and Hobiny A 2020 Front. Inform. Technol. Electronic Eng.21 1387 [27] Kartelija G, Nedeljkovic M and Radenovic L 2003 Comp. Biochem. Phys. A134 483 [28] Rodríguez-Sosa L, Calderón-Rosete G, Flores G and Porras M G 2007 Synapse61 801 [29] Yao Z, Zhou P, Zhu Z and Ma J 2021 Neurocomputing423 518 [30] Tzen J J, Jeng S L and Chieng W H 2003 Precis. Engin.27 70 [31] Richter H, Misawa E A, Lucca D A and Lu H 2001 Precis. Engin.25 128 [32] Wang Q and Quek S T 2000 Smart Mater. Struct.9 103 [33] Elvin N G and Elvin A A 2009 J. Intel. Mat. Syst. Struct.20 3 [34] Flynn A M and Sanders S R 2002 IEEE Tr. Power Electr.17 8 [35] Eltamaly A M and Addoweesh K E 2016 IEEE Tr. Power Electr.32 7663 [36] Smyth K and Kim S G 2015 IEEE Tr. Ultrason. Ferr.62 744 [37] Zhou P, Yao Z, Ma J and Zhu Z G 2021 Chaos, Solitons & Fractals145 110751 [38] Zhou P, Ma J and Tang J 2020 Nonlinear Dyn.100 2353 [39] Ma J 2022 Chaos Theory Applicat.4 1 [40] Ma J, Yang Z, Yang L and Tang J 2019 J. Zhejiang Univ. Sci. A20 639 [41] Thanapitak S and Toumazou C 2012 IEEE Tr. Biomed. Circ. Syst.7 296 [42] Kamermans M and Fahrenfort I 2004 Curr. Opin. Neurobiol.14 531 [43] Gardner D and Kandel E R 1972 Science176 675 [44] Parnas H and Parnas I 2007 Trends Neurosci.30 54 [45] Kawato M, Sokabe M and Suzuki R 1979 Biol. Cybern.34 81 [46] O'brien J 2014 Curr. Opin. Neurobiol.29 64 [47] Miller A C and Pereda A E 2017 Dev. Neurobiol.77 562 [48] Martin E A, Lasseigne A M and Miller A C 2020 Front. Neuroanat.14 12 [49] Xu Y, Yao Z, Hobiny A and Ma J 2019 Front. Inform. Technol. Electron. Eng.20 571 [50] Yao Z, Ma J, Yao Y and Wang C 2019 Nonlinear Dyn.96 205 [51] Liu Z, Wang C, Zhang G and Zhang Y 2019 Int. J. Mod. Phys. B33 1950170 [52] Liu Y, Huang W, Wang X, Liang R, Wang J, Yu B, Ren T L and Xu J 2018 IEEE J. Electron. Devi.7 13 [53] Aghnout S and Karimi G 2019 Integr.64 184 [54] Wang W, He C, Wang Z, Cheng J, Mo X S, Tian K, Fan D G, Luo X, Yuan M M and Kurth J 2021 Neurocomputing456 23 [55] Ma S Y, Zhou P, Ma J and Wang C 2020 Int. J. Mod. Phys. B34 2050074 [56] Liu Z L, Zhou P, Ma J, Hobiny A and Alzahrani F 2020 Chaos, Solitons & Fractals131 109533 [57] Rajagopal K, Jafari S, Moroz I, Karthikeyan A and Srinivasan A 2021 Chaos31 073117 [58] Rajagopal K, Ramesh A, Moroz I, Duraisamy P and Karthikeyan A 2021 Chaos31 063111 [59] Rajagopal K, Ramesh A, Moroz I, Duraisamy P and Karthikeyan A 2021 Chaos31 063111 [60] Rajagopal K, Jafari S, Li C, Karthikeyane A and Duraisamya P 2021 Chaos, Solitons & Fractals146 110855 [61] Rajagopal K, Jafari A, He S, Parastesh F, Jafari S and Hussain I 2021 Eur. Phys. J. Spec. Top. [62] Zhou C, Wang C, Sun Y and Wang Y 2020 Neurocomput.403 211 [63] Yao W, Wang C, Cao J, Sun Y and Zhou C 2019 Neurocomput.363 281 [64] Yao W, Wang C, Sun Y, Zhou C and Lin H 2020 Neurocomputing404 367 [65] Zhang Y, Zhou P, Yao Z and Ma J 2021 Pramana J. Phys.95 49
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.