Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 026701    DOI: 10.1088/1674-1056/ac3d81
RAPID COMMUNICATION Prev   Next  

Collective modes of type-II Weyl fermions with repulsive S-wave interaction

Xun-Gao Wang(王勋高)1,2,3, Yuan Sun(孙远)3, Liang Liu(刘亮)3, and Wu-Ming Liu(刘伍明)1,2,4,†
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
3 Key Laboratory of Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Three-dimensional type-II Weyl fermions possess overtilted cone-like low-energy band dispersion. Unlike the closed ellipsoidal Fermi surface for type-I Weyl fermions, the Fermi surface is an open hyperboloid for type-II Weyl fermions. We evaluate the spin and density susceptibility of type-II Weyl fermions with repulsive S-wave interaction by means of Green's functions. We obtain the particle-hole continuum along the tilted momentum direction and perpendicular to the tilted momentum direction respectively. We find the zero sound mode in some repulsive interaction strengths by numerically solving the pole equations of the susceptibility within the random-phase approximation.
Keywords:  Weyl fermions      zero sound mode      random-phase approximation  
Received:  08 November 2021      Revised:  23 November 2021      Accepted manuscript online:  26 November 2021
PACS:  67.85.Lm (Degenerate Fermi gases)  
  72.15.Nj (Collective modes (e.g., in one-dimensional conductors))  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2016YFA0301500), the National Natural Science Foundation of China (Grants No. 61835013), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB01020300 and XDB21030300). We are grateful to Sun FaDi for useful discussions.
Corresponding Authors:  Wu-Ming Liu     E-mail:  wliu@iphy.ac.cn

Cite this article: 

Xun-Gao Wang(王勋高), Yuan Sun(孙远), Liang Liu(刘亮), and Wu-Ming Liu(刘伍明) Collective modes of type-II Weyl fermions with repulsive S-wave interaction 2022 Chin. Phys. B 31 026701

[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[3] Bernevig B A, Hughes T L and Zhang S C 2006 Science 349 613
[4] Yang B J and Nagaosa N 2014 Nat. Commun. 5 4898
[5] Potter A C, Kimchi I and Vishwanath A 2014 Nat. Commun. 5 5161
[6] Goldman N, Budich J C and Zoller P 2016 Nat. Phys. 12 639
[7] Sachdeva R, Thakur A, Vignale G and Agarwal 2015 Phys. Rev. B 91 205426
[8] Carbotte J P 2016 Phys. Rev. B 94 165111
[9] Armitage N P, Mele E J and Vishwanath A 2018 Rev. Mod. Phys. 90 015001
[10] Wan X G, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101
[11] Xu S Y, Belopolski I, Alidoust N, et al. 2015 Science 349 613
[12] Lu L, Wang Z Y, Ye D X, Ran L X, Fu L, Joannopoulos J D and Soljacic M 2015 Science 349 622
[13] Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T and Ding H 2015 Phys. Rev. X 5 031013
[14] Dubcek T, Kennedy C, Lu L, Ketterle W, Soljacic M and Buljan H 2015 Phys. Rev. Lett. 114 225301
[15] Wang C L, Zhang Y, Huang J W, et al. 2016 Phys. Rev. B 94 241119
[16] Park M J, Basa B and Gilbert M J 2017 Phys. Rev. B 95 094201
[17] Autes G, Gresch D, Troyer M, Soluyanov A A and Yazyev O V 2016 Phys. Rev. Lett. 117 066402
[18] Yao M Y, Xu N, Wu Q S, Autes G, Kumar N, Strocov V N, Plumb N C, Radovic M, Yazyev O V, Felser C, Mesot J and Shi M 2019 Phys. Rev. Lett. 122 176402
[19] Jia G Y, Huang Z X, Ma Q Y and Li G 2020 Nanophotonics 9 715
[20] Lin C L, Arafune R, Minamitani E, Kawai M and Takagi N 2018 J. Phys.:Condens. Matter 30 105703
[21] Soluyanov A A, Gresch D, Wang Z J, Wu Q S, Troyer M, Dai X and Bernevig B A 2015 Nature 527 495
[22] Jiang J, Liu Z K, Sun Y, Yang H F, Rajamathi C R, Qi Y P, Yang L X, Chen C, Peng H, Wang C C, Sun S Z, Mo S K, Vobornik I, Fujii J, Parkin S S P, Felser C, Yan B H and Chen Y L 2017 Nat. Commun. 8 13973
[23] Deng K, Wan G L, Deng P, et al. 2016 Nat. Phys. 12 1105
[24] Wang Z J, Gresch D, Soluyanov A A, Xie W W, Kushwaha S, Dai X, Troyer M, Cava R J and Bernevig B A 2016 Phys. Rev. Lett. 117 056805
[25] Wang X G, Wang H Y, Zhang J M and Liu W M 2020 Chin. Phys. B 29 117201
[26] Kohler T, Goral K and Julienne P S 2006 Rev. Mod. Phys. 78 1311
[27] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
[28] Raghu S, Chung S B, Qi X L and Zhang S C 2010 Phys. Rev. Lett. 104 116401
[29] Zhang S S, Yu X L, Ye J W and Liu W M 2013 Phys. Rev. A 87 063623
[30] Detassis F, Fritz L and Grubinskas S 2017 Phys. Rev. B 96 195157
[31] Santos-Cottin D, Martino E, Le Mardelé F, Witteveen C, von Rohr F O, Homes C C, Rukelj Z and Akrap A 2020 Phys. Rev. Mater. 4 021201
[1] Thermodynamic properties of massless Dirac-Weyl fermions under the generalized uncertainty principle
Guang-Hua Xiong(熊光华), Chao-Yun Long(龙超云), and He Su(苏贺). Chin. Phys. B, 2021, 30(7): 070302.
[2] Collective modes of Weyl fermions with repulsive S-wave interaction
Xun-Gao Wang(王勋高), Huan-Yu Wang(王寰宇), Jiang-Min Zhang(张江敏), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2020, 29(11): 117201.
[3] Application of the second-order ground-state correlation and random-phase approximation on photoionization cross section of manganese
Lu Peng-Fei (芦鹏飞), Liu Jin-Chao (刘锦超), Yang Xiang-Dong (杨向东), Ma Xiao-Guang (马晓光). Chin. Phys. B, 2003, 12(2): 159-163.
No Suggested Reading articles found!