|
|
Collective modes of type-II Weyl fermions with repulsive S-wave interaction |
Xun-Gao Wang(王勋高)1,2,3, Yuan Sun(孙远)3, Liang Liu(刘亮)3, and Wu-Ming Liu(刘伍明)1,2,4,† |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 3 Key Laboratory of Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; 4 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract Three-dimensional type-II Weyl fermions possess overtilted cone-like low-energy band dispersion. Unlike the closed ellipsoidal Fermi surface for type-I Weyl fermions, the Fermi surface is an open hyperboloid for type-II Weyl fermions. We evaluate the spin and density susceptibility of type-II Weyl fermions with repulsive S-wave interaction by means of Green's functions. We obtain the particle-hole continuum along the tilted momentum direction and perpendicular to the tilted momentum direction respectively. We find the zero sound mode in some repulsive interaction strengths by numerically solving the pole equations of the susceptibility within the random-phase approximation.
|
Received: 08 November 2021
Revised: 23 November 2021
Accepted manuscript online: 26 November 2021
|
PACS:
|
67.85.Lm
|
(Degenerate Fermi gases)
|
|
72.15.Nj
|
(Collective modes (e.g., in one-dimensional conductors))
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2016YFA0301500), the National Natural Science Foundation of China (Grants No. 61835013), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB01020300 and XDB21030300). We are grateful to Sun FaDi for useful discussions. |
Corresponding Authors:
Wu-Ming Liu
E-mail: wliu@iphy.ac.cn
|
Cite this article:
Xun-Gao Wang(王勋高), Yuan Sun(孙远), Liang Liu(刘亮), and Wu-Ming Liu(刘伍明) Collective modes of type-II Weyl fermions with repulsive S-wave interaction 2022 Chin. Phys. B 31 026701
|
[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 [2] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 [3] Bernevig B A, Hughes T L and Zhang S C 2006 Science 349 613 [4] Yang B J and Nagaosa N 2014 Nat. Commun. 5 4898 [5] Potter A C, Kimchi I and Vishwanath A 2014 Nat. Commun. 5 5161 [6] Goldman N, Budich J C and Zoller P 2016 Nat. Phys. 12 639 [7] Sachdeva R, Thakur A, Vignale G and Agarwal 2015 Phys. Rev. B 91 205426 [8] Carbotte J P 2016 Phys. Rev. B 94 165111 [9] Armitage N P, Mele E J and Vishwanath A 2018 Rev. Mod. Phys. 90 015001 [10] Wan X G, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101 [11] Xu S Y, Belopolski I, Alidoust N, et al. 2015 Science 349 613 [12] Lu L, Wang Z Y, Ye D X, Ran L X, Fu L, Joannopoulos J D and Soljacic M 2015 Science 349 622 [13] Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T and Ding H 2015 Phys. Rev. X 5 031013 [14] Dubcek T, Kennedy C, Lu L, Ketterle W, Soljacic M and Buljan H 2015 Phys. Rev. Lett. 114 225301 [15] Wang C L, Zhang Y, Huang J W, et al. 2016 Phys. Rev. B 94 241119 [16] Park M J, Basa B and Gilbert M J 2017 Phys. Rev. B 95 094201 [17] Autes G, Gresch D, Troyer M, Soluyanov A A and Yazyev O V 2016 Phys. Rev. Lett. 117 066402 [18] Yao M Y, Xu N, Wu Q S, Autes G, Kumar N, Strocov V N, Plumb N C, Radovic M, Yazyev O V, Felser C, Mesot J and Shi M 2019 Phys. Rev. Lett. 122 176402 [19] Jia G Y, Huang Z X, Ma Q Y and Li G 2020 Nanophotonics 9 715 [20] Lin C L, Arafune R, Minamitani E, Kawai M and Takagi N 2018 J. Phys.:Condens. Matter 30 105703 [21] Soluyanov A A, Gresch D, Wang Z J, Wu Q S, Troyer M, Dai X and Bernevig B A 2015 Nature 527 495 [22] Jiang J, Liu Z K, Sun Y, Yang H F, Rajamathi C R, Qi Y P, Yang L X, Chen C, Peng H, Wang C C, Sun S Z, Mo S K, Vobornik I, Fujii J, Parkin S S P, Felser C, Yan B H and Chen Y L 2017 Nat. Commun. 8 13973 [23] Deng K, Wan G L, Deng P, et al. 2016 Nat. Phys. 12 1105 [24] Wang Z J, Gresch D, Soluyanov A A, Xie W W, Kushwaha S, Dai X, Troyer M, Cava R J and Bernevig B A 2016 Phys. Rev. Lett. 117 056805 [25] Wang X G, Wang H Y, Zhang J M and Liu W M 2020 Chin. Phys. B 29 117201 [26] Kohler T, Goral K and Julienne P S 2006 Rev. Mod. Phys. 78 1311 [27] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225 [28] Raghu S, Chung S B, Qi X L and Zhang S C 2010 Phys. Rev. Lett. 104 116401 [29] Zhang S S, Yu X L, Ye J W and Liu W M 2013 Phys. Rev. A 87 063623 [30] Detassis F, Fritz L and Grubinskas S 2017 Phys. Rev. B 96 195157 [31] Santos-Cottin D, Martino E, Le Mardelé F, Witteveen C, von Rohr F O, Homes C C, Rukelj Z and Akrap A 2020 Phys. Rev. Mater. 4 021201 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|