Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 070502    DOI: 10.1088/1674-1056/24/7/070502
GENERAL Prev   Next  

Multifractal analysis of white matter structural changes on 3D magnetic resonance imaging between normal aging and early Alzheimer's disease

Ni Huang-Jing (倪黄晶)a, Zhou Lu-Ping (周泸萍)b, Zeng Peng (曾彭)a, Huang Xiao-Lin (黄晓林)a, Liu Hong-Xing (刘红星)a, Ning Xin-Bao (宁新宝)a, the Alzheimer's Disease Neuroimaging Initiativea
a School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;
b School of Computer Science and Software Engineering, University of Wollongong, Wollongong NSW 2522, Australia
Abstract  

Applications of multifractal analysis to white matter structure changes on magnetic resonance imaging (MRI) have recently received increasing attentions. Although some progresses have been made, there is no evident study on applying multifractal analysis to evaluate the white matter structural changes on MRI for Alzheimer's disease (AD) research. In this paper, to explore multifractal analysis of white matter structural changes on 3D MRI volumes between normal aging and early AD, we not only extend the traditional box-counting multifractal analysis (BCMA) into the 3D case, but also propose a modified integer ratio based BCMA (IRBCMA) algorithm to compensate for the rigid division rule in BCMA. We verify multifractal characteristics in 3D white matter MRI volumes. In addition to the previously well studied multifractal feature, Δα, we also demonstrated Δf as an alternative and effective multifractal feature to distinguish NC from AD subjects. Both Δα and Δf are found to have strong positive correlation with the clinical MMSE scores with statistical significance. Moreover, the proposed IRBCMA can be an alternative and more accurate algorithm for 3D volume analysis. Our findings highlight the potential usefulness of multifractal analysis, which may contribute to clarify some aspects of the etiology of AD through detection of structural changes in white matter.

Keywords:  multifractal      white matter structural change      magnetic resonance imaging      Alzheimer'      s disease  
Received:  24 December 2014      Revised:  05 February 2015      Accepted manuscript online: 
PACS:  05.45.Df (Fractals)  
  47.53.+n (Fractals in fluid dynamics)  
  87.19.lf (MRI: anatomic, functional, spectral, diffusion)  
  87.61.-c (Magnetic resonance imaging)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61271079), the Vice Chancellor Research Grant in University of Wollongong, and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.

Corresponding Authors:  Zhou Lu-Ping, Ning Xin-Bao     E-mail:  lupingz@uow.edu.au;xbning@nju.edu.cn

Cite this article: 

Ni Huang-Jing (倪黄晶), Zhou Lu-Ping (周泸萍), Zeng Peng (曾彭), Huang Xiao-Lin (黄晓林), Liu Hong-Xing (刘红星), Ning Xin-Bao (宁新宝), the Alzheimer's Disease Neuroimaging Initiative Multifractal analysis of white matter structural changes on 3D magnetic resonance imaging between normal aging and early Alzheimer's disease 2015 Chin. Phys. B 24 070502

[1] Salloway S and Correia S 2009 Clev Clin J. Med. 76 49
[2] Bartzokis G, Sultzer D, Lu P H, Nuechterlein K H, Mintz J and Cummings J L 2004 Neurobiol. Aging 25 843
[3] Han X, Holtzman D M, Mckeel D J, Kelley J and Morris J C 2002 J. Neurochem. 82 809
[4] Andin U, Passant U, Gustafson L and Englund E 2007 Arch. Gerontol. Geriat. 44 277
[5] Bauer C M, Cabral H J and Killiany R J 2014 Brain Imaging Behav. 8 133
[6] Migliaccio R, Agosta F, Possin K L, Rabinovici G D, Miller B L and Gorno-Tempini M L 2012 Alzheimer's & Dementia 8 S78
[7] Takahashi T, Murata T, Narita K, Hamada T, Kosaka H, Omori M, Takahashi K, Kimura H, Yoshida H and Wada Y 2006 Neuroimage 32 1158
[8] Zhang L, Liu J Z, Dean D, Sahgal V and Yue G H 2006 J. Neurosci. Meth. 150 242
[9] Halsey T C, Jensen M H, Kadanoff L P, Procaccia I and Shraiman B I 1986 Phys. Rev. A 33 1141
[10] Takahashi T, Murata T, Omori M, Kosaka H, Takahashi K, Yonekura Y and Wada Y 2004 J. Neurol Sci. 225 33
[11] Takahashi T, Kosaka H, Murata T, Omori M, Narita K, Mitsuya H, Takahashi K, Kimura H and Wada Y 2009 Psychiatry Research: Neuroimaging 171 177
[12] Wang D, Yu Z and Anh V 2012 Chin. Phys. B 21 080504
[13] Zang B and Shang P 2007 Chin. Phys. 16 565
[14] Zhang M, Li Z, Chen X, Liu C, Teng S and Cheng C 2013 Chin. Phys. Lett. 30 044210
[15] Lopes R, Dubois P, Bhouri I, Bedoui M H, Maouche S and Betrouni N 2011 Pattern Recogn. 44 1690
[16] Chen W, Giger M L, Li H, Bick U and Newstead G M 2007 Magn. Reson. Med. 58 562
[17] Long M and Peng F 2013 Radioengineering 22 208
[18] Chhabra A and Jensen R V 1989 Phys. Rev. Lett. 62 1327
[19] Xu Y, Qian C, Pan L, Wang B and Lou C 2012 Plos One 7 e29956
[20] Bisoi A K and Mishra J 2001 Pattern Recogn. Lett. 22 631
[21] Pangman V C, Sloan J and Guse L 2000 Appl. Nurs. Res. 13 209
[22] Ashburner J 2007 Neuroimage 38 95
[1] Multifractal analysis of the software evolution in software networks
Meili Liu(刘美丽), Xiaogang Qi(齐小刚), and Hao Pan(潘浩). Chin. Phys. B, 2022, 31(3): 030501.
[2] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[3] Parkinsonian oscillations and their suppression by closed-loop deep brain stimulation based on fuzzy concept
Xi-Le Wei(魏熙乐), Yu-Lin Bai(白玉林), Jiang Wang(王江), Si-Yuan Chang(常思远), and Chen Liu(刘晨). Chin. Phys. B, 2022, 31(12): 128701.
[4] Three-dimensional clogging structures of granular spheres near hopper orifice
Jing Yang(杨敬), Dianjinfeng Gong(宫殿锦丰), Xiaoxue Wang(汪晓雪), Zhichao Wang(王志超), Jianqi Li(李建奇), Bingwen Hu(胡炳文), and Chengjie Xia(夏成杰). Chin. Phys. B, 2022, 31(1): 014501.
[5] Tunable inhibition of β-amyloid peptides by fast green molecules
Tiantian Yang(杨甜甜), Tianxiang Yu(俞天翔), Wenhui Zhao(赵文辉), and Dongdong Lin(林冬冬). Chin. Phys. B, 2021, 30(8): 088701.
[6] Individual identification using multi-metric of DTI in Alzheimer's disease and mild cognitive impairment
Ying-Teng Zhang(张应腾), Shen-Quan Liu(刘深泉). Chin. Phys. B, 2018, 27(8): 088702.
[7] Design of small-scale gradient coils in magnetic resonance imaging by using the topology optimization method
Hui Pan(潘辉), Feng Jia(贾峰), Zhen-Yu Liu(刘震宇), Maxim Zaitsev, Juergen Hennig, Jan G Korvink. Chin. Phys. B, 2018, 27(5): 050201.
[8] Performance study of aluminum shielded room for ultra-low-field magnetic resonance imaging based on SQUID: Simulations and experiments
Bo Li(李波), Hui Dong(董慧), Xiao-Lei Huang(黄小磊), Yang Qiu(邱阳), Quan Tao(陶泉), Jian-Ming Zhu(朱建明). Chin. Phys. B, 2018, 27(2): 020701.
[9] Detection of meso-micro scale surface features based on microcanonical multifractal formalism
Yuanyuan Yang(杨媛媛), Wei Chen(陈伟), Tao Xie(谢涛), William Perrie. Chin. Phys. B, 2018, 27(1): 010502.
[10] Multifractal modeling of the production of concentrated sugar syrup crystal
Sheng Bi(闭胜), Jianbo Gao(高剑波). Chin. Phys. B, 2016, 25(7): 070502.
[11] Novel magnetic vortex nanorings/nanodiscs: Synthesis and theranostic applications
Liu Xiao-Li (刘晓丽), Yang Yong (杨勇), Wu Jian-Peng (吴建鹏), Zhang Yi-Fan (张艺凡), Fan Hai-Ming (樊海明), Ding Jun (丁军). Chin. Phys. B, 2015, 24(12): 127505.
[12] Self-assembled superparamagnetic nanoparticles as MRI contrast agents–A review
Su Hong-Ying (苏红莹), Wu Chang-Qiang (吴昌强), Li Dan-Yang (李丹阳), Ai Hua (艾华). Chin. Phys. B, 2015, 24(12): 127506.
[13] Linear-fitting-based similarity coefficient map for tissue dissimilarity analysis in T2*-w magnetic resonance imaging
Yu Shao-De (余绍德), Wu Shi-Bin (伍世宾), Wang Hao-Yu (王浩宇), Wei Xin-Hua (魏新华), Chen Xin (陈鑫), Pan Wan-Long (潘万龙), Hu Jiani, Xie Yao-Qin (谢耀钦). Chin. Phys. B, 2015, 24(12): 128711.
[14] Flexible reduced field of view magnetic resonance imaging based on single-shot spatiotemporally encoded technique
Li Jing (李敬), Cai Cong-Bo (蔡聪波), Chen Lin (陈林), Chen Ying (陈颖), Qu Xiao-Bo (屈小波), Cai Shu-Hui (蔡淑惠). Chin. Phys. B, 2015, 24(10): 108703.
[15] Surface modification of magnetic nanoparticles in biomedicine
Chu Xin (储鑫), Yu Jing (余靓), Hou Yang-Long (侯仰龙). Chin. Phys. B, 2015, 24(1): 014704.
No Suggested Reading articles found!