Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 010502    DOI: 10.1088/1674-1056/27/1/010502
GENERAL Prev   Next  

Detection of meso-micro scale surface features based on microcanonical multifractal formalism

Yuanyuan Yang(杨媛媛)1, Wei Chen(陈伟)2, Tao Xie(谢涛)3, William Perrie4
1 School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China;
2 School of Automation, Wuhan University of Technology, Wuhan 430070, China;
3 School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China;
4 Fisheries & Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, B2Y 4A2 Canada
Abstract  Synthetic aperture radar (SAR) is an effective tool to analyze the features of the ocean. In this paper, the microcanonical multifractal formalism is used to analyze SAR images to obtain meso-micro scale surface features. We use the Sobel operator to calculate the gradient of each point in the image, then operate continuous variable scale wavelet transform on this gradient matrix. The relationship between the wavelet coefficient and scale is built by linear regression. This relationship decides the singular exponents of every point in the image which contain local and global features. The manifolds in the ocean can be revealed by analyzing these exponents. The most singular manifold, which is related to the streamlines in the SAR images, can be obtained with a suitable threshold of the singular exponents. Experiments verify that application of the microcanonical multifractal formalism to SAR image analysis is effective for detecting the meso-micro scale surface information.
Keywords:  multifractal      microcanonical      singularity      analysis  
Received:  31 July 2017      Revised:  12 September 2017      Accepted manuscript online: 
PACS:  05.45.Df (Fractals)  
  41.20.-q (Applied classical electromagnetism)  
Fund: Project supported by the National Key R&D Program of China (Grant No.2016YFC1401007),the Global Change Research Program of China (Grant No.2015CB953901),the National Natural Science Foundation of China (Grant No.41776181),the Canadian Program on Energy Research and Development (OERD),Canadian Space Agency's SWOT Program,and the Canadian Marine Environmental Observation Prediction and Response Network (MEOPAR).
Corresponding Authors:  Yuanyuan Yang     E-mail:  yangyuanyuan@whut.edu.cn

Cite this article: 

Yuanyuan Yang(杨媛媛), Wei Chen(陈伟), Tao Xie(谢涛), William Perrie Detection of meso-micro scale surface features based on microcanonical multifractal formalism 2018 Chin. Phys. B 27 010502

[1] Lettau M 1997 Journal of Economic Dynamics and Control 21 1117
[2] Kinsner W and Dansereau R 2006 IEEE 5th International Conference on Cognitive Informatics, July 17-19, 2006, Beijin, China, p. 200
[3] Bi S and Gao J B 2016 Chin. Phys. B 25 070502
[4] Bi F and Li C F 2013 Chin. Phys. Lett. 30 010306
[5] Ni H J, Zhou L P, Zeng P, Huang X L, Liu H X, Ning X B and the Alzheimer's Disease Neuroimaging Initiative 2015 Chin. Phys. B 24 070502
[6] Isern-Fontanet J, Turiel A, García-Ladona E and Font J 2007 Journal of Geophysical Research 112 05024
[7] Abraham E and Bowen M 2002 Chaos 12 373
[8] Liang S Y, Wang Q M and Zhong X M 2009 The 2nd International Conference on Power Electronics and Intelligent Transportation System, December 19-20, 2009, Shenzhen, China, p. 27
[9] He C, Yang S X and Huang X 2004 Image and Signal Processing 151 207
[10] Lu J, Zou Y R and Ye Z X 2008 International Colloquium on ComPuting, Communication, Control, and Management, August 3-4, 2008, Guangzhou, China, p. 115
[11] Xi Y F, Liu T Y and Wu X Y 2009 The 2nd International Congress on Image and Signal Proeessing, October 17-18, 2009, Tianjin, China, p. 1
[12] Cao W L, Shi Z K and Feng J H 2006 IEEE 5th International Conference on Cognitive Informatics, July 17-19, 2006, Beijin, China, p. 903
[13] Soemintapura K and Langi A 1998 IEEE Asia-Pacific Conference on Circuits and Systems, November 24-27, 1998, Chiangmai, Thailand, p. 65
[14] Gao J B and Yao K 2002 IEEE Radar Conference, April 22-25, 2002, Long Beach, California, p. 500
[15] Arneodo A, Aubenton-Carafa Y and Bacry E 1996 Physical D 96 291
[16] Arneodo1A, Baudet C and Belin F 1996 Europhys. Lett. 34 411
[17] Turiel A, Parga N and Daniel L 2000 Neural Computation 12 763
[18] Zhang A H, Li X W, Su G F and Zhang Y 2015 Chin. Phys. Lett. 32 090501
[19] Turiel A, Grazzini J and Yahia H 2005 IEEE Geoscience and Remote Sensing Letters 2 447
[20] Yu Y M, Yang L C, Zhou Q, Zhao L L and Liu Z P 2016 Chin. Phys. B 25 060503
[21] Zhang M N, Li Z H, Chen X Y, Liu C X, Teng S Y and Cheng C F 2013 Chin. Phys. Lett. 30 044210
[22] Lin Y L, Yan Z G, Yang J, Wang C Y and Bian B M 2012 Acta Phys. Sin. 61 100505 (in Chinese)
[23] Yang J, Bian B M, Yan Z G, Wang C Y and Li Z H 2011 Acta Phys. Sin. 60 100506 (in Chinese)
[24] Xiao B Q, Fan J T, Jiang G P and Chen L X 2012 Acta Phys. Sin. 61 154401 (in Chinese)
[25] Xing H Y, Gong P and Xu W 2012 Acta Phys. Sin. 61 160504 (in Chinese)
[26] Umbert M, Hoareau N, Turiel A and Ballabrera-Poy J 2014 Remote Sensing of Environment 146 172
[27] Arrault J, Arneodo A, Davis A and Marshak A 1997 Phys. Rev. Lett. 79 75
[28] Xie T, He C, Perrie W, Kuang H L, Zou G H and Chen W 2010 Chin. Phys. B 19 024101
[29] Xie T, Shen T, Perrie W, Wei C and Kuang H L 2010 Chin. Phys. B 19 054102
[30] Xie T, Perrie W, Fang H, Zhao L, Yu W J and He Y J 2017 Chin. Phys. B 26 054102
[31] Xie T, Zou G H, Perrie W, Kuang H L and Wei C 2010 Chin. Phys. B 19 059201
[32] Xie T, Perrie W, Zhao S Z, Fang H, Yu W J and He Y J 2016 Chin. Phys. B 25 064101
[33] Xie T, Fang H, Perrie W, Zhao S Z, Yu W J and He Y J 2016 Chin. Phys. B 25 074102
[34] Turiel A and Pozo A 2002 IEEE Transactions on Image Processing 11 345
[35] Carrasco H, Sudre J and Garcon V 2015 Biogeosciences Discuss 12 1405
[1] Acoustic propagation uncertainty in internal wave environments using an ocean-acoustic joint model
Fei Gao(高飞), Fanghua Xu(徐芳华), Zhenglin Li(李整林), Jixing Qin(秦继兴), and Qinya Zhang(章沁雅). Chin. Phys. B, 2023, 32(3): 034302.
[2] Performance analysis of quantum key distribution using polarized coherent-states in free-space channel
Zengte Zheng(郑增特), Ziyang Chen(陈子扬), Luyu Huang(黄露雨),Xiangyu Wang(王翔宇), and Song Yu(喻松). Chin. Phys. B, 2023, 32(3): 030306.
[3] Effect of bio-tissue deformation behavior due to intratumoral injection on magnetic hyperthermia
Yundong Tang(汤云东), Jian Zou(邹建), Rodolfo C.C. Flesch, and Tao Jin(金涛). Chin. Phys. B, 2023, 32(3): 034304.
[4] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[5] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[6] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[7] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[8] Finite-key analysis of practical time-bin high-dimensional quantum key distribution with afterpulse effect
Yu Zhou(周雨), Chun Zhou(周淳), Yang Wang(汪洋), Yi-Fei Lu(陆宜飞), Mu-Sheng Jiang(江木生), Xiao-Xu Zhang(张晓旭), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2022, 31(8): 080303.
[9] Bifurcation analysis of visual angle model with anticipated time and stabilizing driving behavior
Xueyi Guan(管学义), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2022, 31(7): 070507.
[10] Influences of Marangoni convection and variable magnetic field on hybrid nanofluid thin-film flow past a stretching surface
Noor Wali Khan, Arshad Khan, Muhammad Usman, Taza Gul, Abir Mouldi, and Ameni Brahmia. Chin. Phys. B, 2022, 31(6): 064403.
[11] A nonlinear wave coupling algorithm and its programing and application in plasma turbulences
Yong Shen(沈勇), Yu-Hang Shen(沈煜航), Jia-Qi Dong(董家齐), Kai-Jun Zhao(赵开君), Zhong-Bing Shi(石中兵), and Ji-Quan Li(李继全). Chin. Phys. B, 2022, 31(6): 065206.
[12] Effect of the target positions on the rapid identification of aluminum alloys by using filament-induced breakdown spectroscopy combined with machine learning
Xiaoguang Li(李晓光), Xuetong Lu(陆雪童), Yong Zhang(张勇),Shaozhong Song(宋少忠), Zuoqiang Hao(郝作强), and Xun Gao(高勋). Chin. Phys. B, 2022, 31(5): 054212.
[13] Fringe removal algorithms for atomic absorption images: A survey
Gaoyi Lei(雷高益), Chencheng Tang(唐陈成), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2022, 31(5): 050313.
[14] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[15] A quantitative analysis method for contact force of mechanism with a clearance joint based on entropy weight and its application in a six-bar mechanism
Zhen-Nan Chen(陈镇男), Meng-Bo Qian(钱孟波), Fu-Xing Sun(孙福兴), and Jia-Xuan Pan(潘佳煊). Chin. Phys. B, 2022, 31(4): 044501.
No Suggested Reading articles found!