Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 030501    DOI: 10.1088/1674-1056/ac1b8a
GENERAL Prev   Next  

Multifractal analysis of the software evolution in software networks

Meili Liu(刘美丽), Xiaogang Qi(齐小刚), and Hao Pan(潘浩)
School of Mathematics and Statistics, Xidian University, Xi'an 0710071, China
Abstract  As the scale and complexity have been increased in software systems, developers place more emphases on software engineering and system designs. Software architecture is evolved with update of softwares, and it plays a fundamental role in determining quality of software systems. Multifractal characteristics of software networks can reflect software quality. In this paper, we construct a software network from the dependencies between object classes, and gain a deep understanding of software through network analysis. To be specific, multifractal analysis of the software network is performed based on a modified box-covering algorithm that yields fewer boxes. We verify that software with different functions and dependencies is multifractal. Further, different versions of the software are compared to discover the evolution of the software architecture. The results show that the singularity of class dependencies decreases as the software is updated. This trend leads to a more specific division of functions between software modules. One of the visible advantages of our work is that it allows the characterization of software structures at the code level. The methodology and results of this paper provide new insights into the evaluation and design of large-scale software systems.
Keywords:  software      multifractal      box-covering algorithm  
Received:  10 June 2021      Revised:  25 July 2021      Accepted manuscript online:  07 August 2021
PACS:  05.45.Df (Fractals)  
  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61877067 and 61572435).
Corresponding Authors:  Xiaogang Qi     E-mail:  xgqi@xidian.edu.cn

Cite this article: 

Meili Liu(刘美丽), Xiaogang Qi(齐小刚), and Hao Pan(潘浩) Multifractal analysis of the software evolution in software networks 2022 Chin. Phys. B 31 030501

[1] Martins L and Tony G 2005 IEEE Trans. Softw. Eng. 46 346
[2] Wilfredo T 2000 Software Fault Tolerance:A Tutorial (NASA Langley Technical Report Server)
[3] Myers and Christopher R 2003 Phys. Rev. E 68 046116
[4] Ai J, Su W, Zhang S and Yang Y 2019 IEEE Trans. Rel. 68 844
[5] Chong C Y and Lee S P 2015 J. Syst. Softw. 110 28
[6] Yan D and Qi G N 2006 Acta Phys. Sin. 55 3799 (in Chinese)
[7] Ma Y T, He K Q, Li B and Liu J 2011 J. Softw. 22 381
[8] Gao Y, Peng Y, Feng X, Chen D, Zhao W and Xu G 2012 J. Tsinghua Univ. 52 1474
[9] Wang B Y and Lü J H 2013 J. Softw. 24 2814
[10] Briand L C, Daly J W and Wust J 1999 Comput. Standards Interfaces 21 165
[11] Kuang L, Zheng B, Li D, Li Y and Sun Y 2015 Sci. China Inf. Sci. 58 1
[12] Song, Chao M, Havlin, Shlomo, Makse and A Hernán 2005 Nature 433 392
[13] Concas G, Locci M F, Marchesi M, Pinna S and Turnu I 2006 Europhys. Lett. 76 1221
[14] Concas G, Marchesi M, Murgia A, Pinna S and Tonelli R 2010 Proceedings of the 2010 ICSE Workshop on Emerging Trends in Software Metrics, May 4, 2010, Cape Town, South Africa, p. 24
[15] Turnu T, Concas G, Marchesi M and Tonelli R 2013 Inf. Sci. 245 290
[16] Peitgen H O, Jürgens H and Saupe D 2004 Math. Gazette 79 241
[17] Song C, Gallos L K, Havlin S and Makse H A 2007 J. Stat. Mech. 2007 P03006
[18] Zhou W X, Jiang Z Q and Sornette D 2007 Physica A 375 741
[19] Zheng W, You Q, Zhang Z and Pan H 2019 IEEE Access 7 68522
[20] Chiranjib B, Hirok C, Argha D, Debasis G and Bikash S 2015 Nat. Hazards 78 855
[21] Zhang Q, Xi X and Luo Z 2013 Chin. J. Sens. Actuators 26 282 (in Chinese)
[22] Liu H Z, Zhang X C and Zhang X 2020 Physica A 545 123585
[23] Zhang X, Liu H Z, Zhao Y F and Zhang X C 2019 Physica A 531 121790
[24] Wang J, Shang P and Cui X 2014 Phys. Rev. E 89 032916
[25] David M T, Vargas F V, Chávez H L and Hernández C 2016 Expert Syst. Appl. 62 373
[26] Mishra A, Bandyopadhyay J N and Jalan S 2021 Chaos, Solitons and Fractals 144 110745
[27] Jiang Z Q, Xie W J, Zhou W X and Sornette D 2019 Rep. Prog. Phys. 82 125901
[28] Zhang A H, Li X W, Su F G and Zhang Y 2015 Chin. Phys. Lett. 32 90501
[29] Chidamber S R and Kemerer C F 1994 IEEE Trans. Softw. Eng. 20 476
[30] Zheng W, Pan Q, Deng Y F, Zhao X K and Kang Z 2016 Chin. Phys. Lett. 33 038901
[1] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[2] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[3] Detection of meso-micro scale surface features based on microcanonical multifractal formalism
Yuanyuan Yang(杨媛媛), Wei Chen(陈伟), Tao Xie(谢涛), William Perrie. Chin. Phys. B, 2018, 27(1): 010502.
[4] Multifractal modeling of the production of concentrated sugar syrup crystal
Sheng Bi(闭胜), Jianbo Gao(高剑波). Chin. Phys. B, 2016, 25(7): 070502.
[5] Multifractal analysis of white matter structural changes on 3D magnetic resonance imaging between normal aging and early Alzheimer's disease
Ni Huang-Jing (倪黄晶), Zhou Lu-Ping (周泸萍), Zeng Peng (曾彭), Huang Xiao-Lin (黄晓林), Liu Hong-Xing (刘红星), Ning Xin-Bao (宁新宝), the Alzheimer's Disease Neuroimaging Initiative. Chin. Phys. B, 2015, 24(7): 070502.
[6] AlOx prepared by atomic layer deposition for high efficiency-type crystalline silicon solar cell
Qiu Hong-Bo (仇洪波), Li Hui-Qi (李惠琪), Liu Bang-Wu (刘邦武), Zhang Xiang (张祥), Shen Ze-Nan (沈泽南). Chin. Phys. B, 2014, 23(2): 027301.
[7] AJAC: Atomic data calculation tool in Python
Amani Tahat, Jordi Marti, Kaher Tahat, Ali Khwaldeh. Chin. Phys. B, 2013, 22(4): 048901.
[8] Multifractal analysis of complex networks
Wang Dan-Ling (王丹龄), Yu Zu-Guo (喻祖国), Anh V. Chin. Phys. B, 2012, 21(8): 080504.
[9] Relationships of exponents in multifractal detrended fluctuation analysis and conventional multifractal analysis
Zhou Yu(周煜), Leung Yee(梁怡), and Yu Zu-Guo(喻祖国) . Chin. Phys. B, 2011, 20(9): 090507.
[10] Protein structural classification and family identification by multifractal analysis and wavelet spectrum
Zhu Shao-Ming(朱少茗), Yu Zu-Guo(喻祖国), and Ahn Vo. Chin. Phys. B, 2011, 20(1): 010505.
[11] Chaos game representation of functional protein sequences, and simulation and multifractal analysis of induced measures
Yu Zu-Guo(喻祖国), Xiao Qian-Jun(肖前军), Shi Long(石龙), Yu Jun-Wu(余君武), and Vo Anh. Chin. Phys. B, 2010, 19(6): 068701.
[12] Wavelet-based multifractal analysis of DNA sequences by using chaos-game representation
Han Jia-Jing(韩佳静) and Fu Wei-Juan (符维娟) . Chin. Phys. B, 2010, 19(1): 010205.
[13] Fractional Fourier transform of Cantor sets: further numerical study
Gao Qiong(高穹), Liao Tian-He(廖天河), and Cui Yuan-Feng(崔远峰). Chin. Phys. B, 2008, 17(6): 2018-2022.
[14] Multifractal analysis of the Yellow River flows
Zang Bao-Jiang(臧保将) and Shang Peng-Jian(商朋见). Chin. Phys. B, 2007, 16(3): 565-569.
[15] The complexity nature of large-scale software systems
Yan Dong(闫栋), Qi Guo-Ning(祁国宁), and Gu Xin-Jian(顾新建). Chin. Phys. B, 2006, 15(11): 2489-2495.
No Suggested Reading articles found!