|
|
Countermeasure against probabilistic blinding attack in practical quantum key distribution systems |
Qian Yong-Jun (钱泳君)a b, Li Hong-Wei (李宏伟)a b c, He De-Yong (何德勇)a b, Yin Zhen-Qiang (银振强)a b, Zhang Chun-Mei (张春梅)a b, Chen Wei (陈巍)a b, Wang Shuang (王双)a b, Han Zheng-Fu (韩正甫)a b |
a Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;
b Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
c Zhengzhou Information Science and Technology Institute, Zhengzhou 450004, China |
|
|
Abstract In a practical quantum key distribution (QKD) system, imperfect equipment, especially the single-photon detector, can be eavesdropped on by a blinding attack. However, the original blinding attack may be discovered by directly detecting the current. In this paper, we propose a probabilistic blinding attack model, where Eve probabilistically applies a blinding attack without being caught by using only an existing intuitive countermeasure. More precisely, our countermeasure solves the problem of how to define the bound in the limitation of precision of current detection, and then we prove security of the practical system by considering the current parameter. Meanwhile, we discuss the bound of the quantum bit error rate (QBER) introduced by Eve, by which Eve can acquire information without the countermeasure.
|
Received: 27 February 2015
Revised: 06 May 2015
Accepted manuscript online:
|
PACS:
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2011CBA00200 and 2011CB921200), the National Natural Science Foundation of China (Grant Nos. 61475148, 61201239, 61205118, and 11304397), and the China Postdoctoral Science Foundation (Grant No. 2013M540514). |
Corresponding Authors:
Li Hong-Wei, Yin Zhen-Qiang
E-mail: lihw@mail.ustc.edu.cn;yinzheqi@mail.ustc.edu.cn
|
Cite this article:
Qian Yong-Jun (钱泳君), Li Hong-Wei (李宏伟), He De-Yong (何德勇), Yin Zhen-Qiang (银振强), Zhang Chun-Mei (张春梅), Chen Wei (陈巍), Wang Shuang (王双), Han Zheng-Fu (韩正甫) Countermeasure against probabilistic blinding attack in practical quantum key distribution systems 2015 Chin. Phys. B 24 090305
|
[1] |
Bennet C H and Brassard G 1984 Processings of IEEE International Conference on Computers, Systems and Singnal Processing, p. 175
|
[2] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[3] |
Lo H K and Chau H F 1999 Science 283 2050
|
[4] |
Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
|
[5] |
Zhang C X, Guo B H, Cheng G M, Guo J J and Fan R H 2014 Sci. China-Phys. Mech. Astron. 57 2043
|
[6] |
Gottesman D, Lo H K, Lutkenhaus N and Preskill J 2004 Quantum Inf. Comput. 4 325
|
[7] |
Inamori H, Lütkenhaus N and Mayers D 2007 Eur. Phys. J. D 41 599
|
[8] |
Liu D, Wang S, Yin Z Q, Chen W and Han Z F 2013 Chin. Sci. Bull. 58 3859
|
[9] |
Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M and Lütkenhaus N 2009 Rev. Mod. Phys. 81 1301
|
[10] |
Makarov V and Hjelme D R 2005 J. Mod. Opt. 52 691
|
[11] |
Wang Y, Bao W S, Li H W, Zhou C and Li Y 2014 Chin. Phys. B 23 080303
|
[12] |
Huttner B, Imoto N, Gisin N and Mor T 1995 Phys. Rev. A 51 1863
|
[13] |
Lütkenhaus N and Jahma M 2002 New J. Phys. 4 44
|
[14] |
Fung C H F, Qi B, Tamaki K and Lo H K 2007 Phys. Rev. A 75 032314
|
[15] |
Xu F, Qi B and Lo H K 2010 New J. Phys. 12 113026
|
[16] |
Qi B, Fung C H F, Lo H K and Ma X F 2007 Quant. Inf. Comput. 7 73
|
[17] |
Zhao Y, Fung C H F, Qi B, Chen C and Lo H K 2008 Phys. Rev. A 78 042333
|
[18] |
Li H W, Wang S, Huang J Z, Chen W, Yin Z Q, Li F Y, Zhou Z, Liu D, Zhang Y, Guo G C, Bao W S and Han Z F 2011 Phys. Rev. A 84 062308
|
[19] |
Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
|
[20] |
Li F Y, Yin Z Q, Li H W, Chen W, Wang S, Wen H, Zhao Y B and Han Z F 2014 Chin. Phys. Lett. 31 070302
|
[21] |
Rubenok A, Slater J A, Chan P, Lucio-Martinez I and Tittel W 2013 Phys. Rev. Lett. 111 130501
|
[22] |
Liu Y, Chen T Y, Wang L J, Liang H, Shentu G L, Wang J, Cui K, Yin H L, Liu N L, Li L, Ma X, Pelc J S, Fejer M M, Peng C Z, Zhang Q and Pan J W 2013 Phys. Rev. Lett. 111 130502
|
[23] |
Makarov V 2009 New J. Phys. 11 065003
|
[24] |
Lydersen L,Wiechers C,Wittmann C, Elser D, Skaar J and Makarov V 2010 Nat. Photonics 4 686
|
[25] |
Yuan Z L, Dynes J F and Shields A J 2010 Appl. Phys. Lett. 96 191107
|
[26] |
Lydersen L,Wiechers C,Wittmann C, Elser D, Skaar J and Makarov V 2010 Opt. Express 18 27938
|
[27] |
Sauge S, Lydersen L, Anisimov A, Skaar J and Makarov V 2011 Opt. Express 19 23590
|
[28] |
Yuan Z L, Dynes J F and Shields A J 2010 Nat. Photonics 4 800
|
[29] |
Yuan Z L, Dynes J F and Shields A J 2011 Appl. Phys. Lett. 98 231104
|
[30] |
Hwang W Y 2003 Phys. Rev. Lett. 91 057901
|
[31] |
Ursin R, Tiefenbacher F, Schmitt-Manderbach T, Weier H, Scheidl T, Lindenthal M, Blauensteiner B, Jennewein T, Perdigues J, Trojek P, Omer B, Furst M, Meyenburg M, Rarity J, Sodnik Z, Barbieri C, Weinfurter H and Zeilinger A 2007 Nat. Phys. 3 481
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|