Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 090305    DOI: 10.1088/1674-1056/24/9/090305
GENERAL Prev   Next  

Countermeasure against probabilistic blinding attack in practical quantum key distribution systems

Qian Yong-Jun (钱泳君)a b, Li Hong-Wei (李宏伟)a b c, He De-Yong (何德勇)a b, Yin Zhen-Qiang (银振强)a b, Zhang Chun-Mei (张春梅)a b, Chen Wei (陈巍)a b, Wang Shuang (王双)a b, Han Zheng-Fu (韩正甫)a b
a Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;
b Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
c Zhengzhou Information Science and Technology Institute, Zhengzhou 450004, China
Abstract  

In a practical quantum key distribution (QKD) system, imperfect equipment, especially the single-photon detector, can be eavesdropped on by a blinding attack. However, the original blinding attack may be discovered by directly detecting the current. In this paper, we propose a probabilistic blinding attack model, where Eve probabilistically applies a blinding attack without being caught by using only an existing intuitive countermeasure. More precisely, our countermeasure solves the problem of how to define the bound in the limitation of precision of current detection, and then we prove security of the practical system by considering the current parameter. Meanwhile, we discuss the bound of the quantum bit error rate (QBER) introduced by Eve, by which Eve can acquire information without the countermeasure.

Keywords:  countermeasure bound      single-photon detector      probabilistic blinding attack      quantum key distribution  
Received:  27 February 2015      Revised:  06 May 2015      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
Fund: 

Project supported by the National Basic Research Program of China (Grant Nos. 2011CBA00200 and 2011CB921200), the National Natural Science Foundation of China (Grant Nos. 61475148, 61201239, 61205118, and 11304397), and the China Postdoctoral Science Foundation (Grant No. 2013M540514).

Corresponding Authors:  Li Hong-Wei, Yin Zhen-Qiang     E-mail:  lihw@mail.ustc.edu.cn;yinzheqi@mail.ustc.edu.cn

Cite this article: 

Qian Yong-Jun (钱泳君), Li Hong-Wei (李宏伟), He De-Yong (何德勇), Yin Zhen-Qiang (银振强), Zhang Chun-Mei (张春梅), Chen Wei (陈巍), Wang Shuang (王双), Han Zheng-Fu (韩正甫) Countermeasure against probabilistic blinding attack in practical quantum key distribution systems 2015 Chin. Phys. B 24 090305

[1] Bennet C H and Brassard G 1984 Processings of IEEE International Conference on Computers, Systems and Singnal Processing, p. 175
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
[3] Lo H K and Chau H F 1999 Science 283 2050
[4] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[5] Zhang C X, Guo B H, Cheng G M, Guo J J and Fan R H 2014 Sci. China-Phys. Mech. Astron. 57 2043
[6] Gottesman D, Lo H K, Lutkenhaus N and Preskill J 2004 Quantum Inf. Comput. 4 325
[7] Inamori H, Lütkenhaus N and Mayers D 2007 Eur. Phys. J. D 41 599
[8] Liu D, Wang S, Yin Z Q, Chen W and Han Z F 2013 Chin. Sci. Bull. 58 3859
[9] Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M and Lütkenhaus N 2009 Rev. Mod. Phys. 81 1301
[10] Makarov V and Hjelme D R 2005 J. Mod. Opt. 52 691
[11] Wang Y, Bao W S, Li H W, Zhou C and Li Y 2014 Chin. Phys. B 23 080303
[12] Huttner B, Imoto N, Gisin N and Mor T 1995 Phys. Rev. A 51 1863
[13] Lütkenhaus N and Jahma M 2002 New J. Phys. 4 44
[14] Fung C H F, Qi B, Tamaki K and Lo H K 2007 Phys. Rev. A 75 032314
[15] Xu F, Qi B and Lo H K 2010 New J. Phys. 12 113026
[16] Qi B, Fung C H F, Lo H K and Ma X F 2007 Quant. Inf. Comput. 7 73
[17] Zhao Y, Fung C H F, Qi B, Chen C and Lo H K 2008 Phys. Rev. A 78 042333
[18] Li H W, Wang S, Huang J Z, Chen W, Yin Z Q, Li F Y, Zhou Z, Liu D, Zhang Y, Guo G C, Bao W S and Han Z F 2011 Phys. Rev. A 84 062308
[19] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[20] Li F Y, Yin Z Q, Li H W, Chen W, Wang S, Wen H, Zhao Y B and Han Z F 2014 Chin. Phys. Lett. 31 070302
[21] Rubenok A, Slater J A, Chan P, Lucio-Martinez I and Tittel W 2013 Phys. Rev. Lett. 111 130501
[22] Liu Y, Chen T Y, Wang L J, Liang H, Shentu G L, Wang J, Cui K, Yin H L, Liu N L, Li L, Ma X, Pelc J S, Fejer M M, Peng C Z, Zhang Q and Pan J W 2013 Phys. Rev. Lett. 111 130502
[23] Makarov V 2009 New J. Phys. 11 065003
[24] Lydersen L,Wiechers C,Wittmann C, Elser D, Skaar J and Makarov V 2010 Nat. Photonics 4 686
[25] Yuan Z L, Dynes J F and Shields A J 2010 Appl. Phys. Lett. 96 191107
[26] Lydersen L,Wiechers C,Wittmann C, Elser D, Skaar J and Makarov V 2010 Opt. Express 18 27938
[27] Sauge S, Lydersen L, Anisimov A, Skaar J and Makarov V 2011 Opt. Express 19 23590
[28] Yuan Z L, Dynes J F and Shields A J 2010 Nat. Photonics 4 800
[29] Yuan Z L, Dynes J F and Shields A J 2011 Appl. Phys. Lett. 98 231104
[30] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[31] Ursin R, Tiefenbacher F, Schmitt-Manderbach T, Weier H, Scheidl T, Lindenthal M, Blauensteiner B, Jennewein T, Perdigues J, Trojek P, Omer B, Furst M, Meyenburg M, Rarity J, Sodnik Z, Barbieri C, Weinfurter H and Zeilinger A 2007 Nat. Phys. 3 481
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[4] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[5] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[6] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[7] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[8] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[9] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[10] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[11] Temperature and current sensitivity extraction of optical superconducting transition-edge sensors based on a two-fluid model
Yue Geng(耿悦), Pei-Zhan Li(李佩展), Jia-Qiang Zhong(钟家强), Wen Zhang(张文), Zheng Wang(王争), Wei Miao(缪巍), Yuan Ren(任远), and Sheng-Cai Shi(史生才). Chin. Phys. B, 2021, 30(9): 098501.
[12] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[13] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[14] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[15] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
No Suggested Reading articles found!