Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 095206    DOI: 10.1088/1674-1056/ac133a
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Numerical simulation of anode heat transfer of nitrogen arc utilizing two-temperature chemical non-equilibrium model

Chong Niu(牛冲), Surong Sun(孙素蓉), Jianghong Sun(孙江宏), and Haixing Wang(王海兴)
School of Astronautics, Beihang University, Beijing 100191, China
Abstract  A detailed understanding of anode heat transfer is important for the optimization of arc processing technology. In this paper, a two-temperature chemical non-equilibrium model considering the collisionless space charge sheath is developed to investigate the anode heat transfer of nitrogen free-burning arc. The temperature, total heat flux and different heat flux components are analyzed in detail under different arc currents and anode materials. It is found that the arc current can affect the parameter distributions of anode region by changing plasma characteristics in arc column. As the arc current increases from 100 A to 200 A, the total anode heat flux increases, however, the maximum electron condensation heat flux decreases due to the arc expansion. The anode materials have a significant effect on the temperature and heat flux distributions in the anode region. The total heat flux on thoriated tungsten anode is lower than that on copper anode, while the maximum temperature is higher. The power transferred to thoriated tungsten anode, ranked in descending order, is heat flux from heavy-species, electron condensation heat, heat flux from electrons and ion recombination heat. However, the electron condensation heat makes the largest contribution for power transferred to copper anode.
Keywords:  nitrogen arc      anode heat transfer      chemical non-equilibrium model      space charge sheath  
Received:  22 May 2021      Revised:  04 July 2021      Accepted manuscript online:  12 July 2021
PACS:  52.80.Mg (Arcs; sparks; lightning; atmospheric electricity)  
  52.40.Hf (Plasma-material interactions; boundary layer effects)  
  52.65.-y (Plasma simulation)  
  52.40.Kh (Plasma sheaths)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11735004 and 12005010).
Corresponding Authors:  Surong Sun, Haixing Wang     E-mail:  ssr18@buaa.edu.cn;whx@buaa.edu.cn

Cite this article: 

Chong Niu(牛冲), Surong Sun(孙素蓉), Jianghong Sun(孙江宏), and Haixing Wang(王海兴) Numerical simulation of anode heat transfer of nitrogen arc utilizing two-temperature chemical non-equilibrium model 2021 Chin. Phys. B 30 095206

[1] Murphy A B 2010 J. Phys. D: Appl. Phys. 43 434001
[2] Murphy A B 2015 Plasma Chem. Plasma Process 35 471
[3] Murphy A B 2018 Plasma Sources Sci. Technol. 27 63001
[4] Mckelliget J and Szekely J 1986 Metall. Mater. Trans. A 17 1139
[5] Zhao P, Ni G H, Meng Y D and Masaaki N 2013 Chin. Phys. B 22 064701
[6] Lin Q F, Zhao Y J, Duan W X, Ni G H, Jin X Y, Sui S Y, Xie H B and Meng Y D 2020 Chin. Phys. B 29 125201
[7] Xu B, Jiang F, Chen S J, Tanaka M, Tashiro S and Anh N V 2018 Chin. Phys. B 27 034701
[8] Lago F, Gonzalez J, Freton P and Gleizes A 2004 J. Phys. D: Appl. Phys. 37 883
[9] Baeva M, Kozakov R, Gorchakov S and Uhrlandt 2012 Plasma Sources Sci. Technol. 21 055027
[10] Lu S P, Dong W C, Li D Z and Li Y Y 2009 Comput. Mater. Sci. 45 327
[11] Sakura N, Yoshida M and Tanaka M 2019 J. Phys. D: Appl. Phys. 52 404002
[12] Haidar J and Farmer A J D 1993 J. Phys. D: Appl. Phys. 26 1224
[13] Murphy A B 1994 J. Phys. D: Appl. Phys. 27 1492
[14] Tanaka M, Tashiro S, Satoh T, Murphy A B and Lowke J J 2008 Sci. Technol. Weld Join. 13 225
[15] Chen X and Li H P 2001 Int. J. Heat Mass Transf. 44 2541
[16] Li H P, Ostrikov K K and Sun W 2018 Phys. Rep. 770 1
[17] Guo H, Zhang X, Chen J, Li H P and Ostrikov K 2018 Sci. Rep. 8 4783
[18] Li H P annd Benilov M S 2007 J. Phys. D: Appl. Phys. 40 2010
[19] Nemchinsky V A 2005 J. Phys. D: Appl. Phys. 38 4082
[20] Wang H X, Zhu T, Sun S R, Liu G and Murphy A B 2020 J. Phys. D: Appl. Phys. 53 505205
[21] Benilov M S, Almeida N A, Baeva M, Cunha M D and Benilova L G 2016 J. Phys. D: Appl. Phys. 49 215201
[22] Baeva M, Benilov M S, Almeida N A and Urhlandt D 2016 J. Phys. D: Appl. Phys. 49 245205
[23] Tanaka Y and Sakuta T 2002 J. Phys. D: Appl. Phys. 35 468
[24] Tanaka Y 2004 J. Phys. D: Appl. Phys. 37 1190
[25] Dunn M G and Lordi J A 1969 AIAA J. 8 339
[26] Dutuit O, Carrasco N, Thissen R, Vuitton V, Alcaraz C, Pernot P, Balucani N, Casavecchia P, Canosa A, Picard S L, Loison J C, Herman Z, ZabKA J, Ascenzi D, Tosi P, Franceschi P, Prince S D and Lavvas P 2013 Astrophys. J. Suppl. Ser. 204 20
[27] Bird R B, Stewart W E and Lightfoot E N 2002 Transport phenomena, 2nd edn. (New York: John Wiley & Sons, Inc.) p. 2627
[28] Colombo V, Ghedini E and Sanibondi P. 2008 Prog. Nucl. Energy 50 921
[29] Devoto R S 1973 Phys. Fluids 16 616
[30] Ramshaw J D and Chang C H 1991 Plasma Chem. Plasma Process 11 395
[31] Fridman A, Cho Y I, Greene G A and Bar-cohen A 2007 Transport phenomena in plasma: advances in heat transfer. (Waltham: Academic Press, Elsevier) p. 391
[32] Zhou X 2017 Experimental study on dispersing behaviour of direct-current arc in anode chamber [Master's dissertation]. (Beijing: The University of Chinese-Academy of Sciences) (in Chinesse)
[33] Konishi K, Shigeta M, Tanaka M, Murata A, Murata T and Murphy A B 2017 Weld World 61 197
[34] Hsu K C 1982 A self-consistent model for the high intensity free-burning argon arc [Ph. D. dissertation]. (Minneapolis: University of Minnesota)
[35] Hsu K C, Etemadi K and Pfender E 1983 J. Appl. Phys. 54 1293
[36] Baeva M 2017 Plasma Chem. Plasma Process 37 341
[37] Tanaka M and Lowke J J 2007 J. Phys. D: Appl. Phys. 40 1
[38] Jenista J, Heberlein J V R and Pfender E 1997 IEEE Trans. Plasma Sci. 25 883
[1] Characteristics of DC arcs in a multi-arc generator and their application in the spheroidization of SiO2
Qifu Lin(林启富), Yanjun Zhao(赵彦君), Wenxue Duan(段文学), Guohua Ni(倪国华), Xingyue Jin(靳兴月), Siyuan Sui(隋思源), Hongbing Xie(谢洪兵), and Yuedong Meng(孟月东). Chin. Phys. B, 2020, 29(12): 125201.
[2] Experimental study on energy characteristics and ignition performance of recessed multichannel plasma igniter
Bang-Huang Cai(蔡帮煌), Hui-Min Song(宋慧敏), Min Jia(贾敏), Yun Wu(吴云), Wei Cui(崔巍), Sheng-Fang Huang(黄胜方). Chin. Phys. B, 2020, 29(6): 065207.
[3] Characteristics of non-thermal AC arcs in multi-arc generator
Qifu Lin(林启富), Yanjun Zhao(赵彦君), Wenxue Duan(段文学), Guohua Ni(倪国华), Xinyue Jin(靳兴月), Siyuan Sui(隋思源), Hongbing Xie(谢洪兵), Yuedong Meng(孟月东). Chin. Phys. B, 2019, 28(12): 125205.
[4] Fluctuation of arc plasma in arc plasma torch with multiple cathodes
Zelong Zhang(张泽龙), Cheng Wang(王城), Qiang Sun(孙强), Weidong Xia(夏维东). Chin. Phys. B, 2019, 28(9): 095201.
[5] Experimental investigation on electrical characteristics and ignition performance of multichannel plasma igniter
Sheng-Fang Huang(黄胜方), Hui-Min Song(宋慧敏), Yun Wu(吴云), Min Jia(贾敏), Di Jin(金迪), Zhi-Bo Zhang(张志波), Bing-Xuan Lin(林冰轩). Chin. Phys. B, 2018, 27(3): 035203.
[6] Characteristics of helium DC plasma jets at atmospheric pressure with multiple cathodes
Cheng Wang(王城), Zelong Zhang(张泽龙), Haichao Cui(崔海超), Weiluo Xia(夏维珞), Weidong Xia(夏维东). Chin. Phys. B, 2017, 26(8): 085207.
[7] Modeling and optimization of the multichannel spark discharge
Zhi-Bo Zhang(张志波), Yun Wu(吴云), Min Jia(贾敏), Hui-Min Song(宋慧敏), Zheng-Zhong Sun(孙正中), Ying-Hong Li(李应红). Chin. Phys. B, 2017, 26(6): 065204.
[8] Thermal and induced flow characteristics of radio frequency surface dielectric barrier discharge plasma actuation at atmospheric pressure
Wei-long Wang(王蔚龙), Jun Li(李军), Hui-min Song(宋慧敏), Di Jin(金迪), Min Jia(贾敏), Yun Wu(吴云). Chin. Phys. B, 2017, 26(1): 015205.
[9] Influence of air pressure on the performance of plasma synthetic jet actuator
Yang Li(李洋), Min Jia(贾敏), Yun Wu(吴云), Ying-hong Li(李应红), Hao-hua Zong(宗豪华), Hui-min Song(宋慧敏), Hua Liang(梁华). Chin. Phys. B, 2016, 25(9): 095205.
[10] Electrical and optical characteristics of the radio frequency surface dielectric barrier discharge plasma actuation
Wei-Long Wang(王蔚龙), Hui-Min Song(宋慧敏), Jun Li(李军), Min Jia(贾敏), Yun Wu(吴云), Di Jin(金迪). Chin. Phys. B, 2016, 25(4): 045203.
[11] Electric and plasma characteristics of RF discharge plasma actuation under varying pressures
Huimin Song(宋慧敏), Min Jia(贾敏), Di Jin(金迪), Wei Cui(崔巍), Yun Wu(吴云). Chin. Phys. B, 2016, 25(3): 035204.
[12] Evolution of magnetically rotating arc into large area arc plasma
Wang Cheng (王城), Li Wan-Wan (李皖皖), Zhang Xiao-Ning (张晓宁), Zha Jun (査俊), Xia Wei-Dong (夏维东). Chin. Phys. B, 2015, 24(6): 065206.
[13] Shockwave-boundary layer interaction control by plasma aerodynamic actuation:An experimental investigation
Sun Quan (孙权), Cui Wei (崔巍), Li Ying-Hong (李应红), Cheng Bang-Qin (程邦勤), Jin Di (金迪), Li Jun (李军). Chin. Phys. B, 2014, 23(7): 075210.
[14] Investigation on the shockwave induced by surface arc plasma in quiescent air
Jin Di (金迪), Li Ying-Hong (李应红), Jia Min (贾敏), Li Fan-Yu (李凡玉), Cui Wei (崔巍), Sun Quan (孙权), Zhang Bai-Ling (张百灵), Li Jun (李军). Chin. Phys. B, 2014, 23(3): 035201.
[15] Simulation of transition from Townsend mode to glow discharge mode in a helium dielectric barrier discharge at atmospheric pressure
Li Xue-Chen(李雪辰), Niu Dong-Ying(牛东莹), Xu Long-Fei(许龙飞), Jia Peng-Ying(贾鹏英), and Chang Yuan-Yuan(常媛媛) . Chin. Phys. B, 2012, 21(7): 075204.
No Suggested Reading articles found!