Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 014401    DOI: 10.1088/1674-1056/ac0819
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Thermal apoptosis analysis considering injection behavior optimization and mass diffusion during magnetic hyperthermia

Yun-Dong Tang(汤云东)1,†, Jian Zou(邹建)1, Rodolfo C C Flesch(鲁道夫 C C 弗莱施)2, Tao Jin(金涛)3, and Ming-Hua He(何明华)4,‡
1 College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116, China;
2 Departamento de Automação e Sistemas, Universidade Federal de Santa Catarina, 88040-900 Flórianopolis, SC, Brazil;
3 College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China;
4 Fujian Medical University, Fuzhou 350122, China
Abstract  Thermally induced apoptosis for tumors depends mainly on the intrinsic characteristics of biological tissues as well as treatment temperature profile during magnetic hyperthermia. Further, treatment temperature distribution inside tumor depends on the injection behavior of irregular tumors, such as the injection dose and the injection location of nanofluids. In order to improve the treatment effect, the simulated annealing algorithm is adopted in this work to optimize the nanofluid injection behavior, and the improved Arrhenius model is used to evaluate the malignant ablations for three typical malignant tumor cell models. In addition, both the injection behavior optimization and the mass diffusion of nanofluid are both taken into consideration in order to improve the treatment effect. The simulation results demonstrate that the injection behavior can be optimized effectively by the proposed optimization method before therapy, the result of which can also conduce to improving the thermal apoptosis possibility for proposed typical malignant cells. Furthermore, an effective approach is also employed by considering longer diffusion duration and correct power dissipation at the same time. The results show that a better result can then be obtained than those in other cases when the power dissipation of MNPs is set to be QMNP=5.4×107W·m3 and the diffusion time is 16 h.
Keywords:  thermal apoptosis analysis      injection behavior optimization      mass diffusion      magnetic hyperthermia  
Received:  25 March 2021      Revised:  31 May 2021      Accepted manuscript online:  04 June 2021
PACS:  44.10.+i (Heat conduction)  
  44.05.+e (Analytical and numerical techniques)  
  87.85.J- (Biomaterials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62071124), the Natural Science Foundation of Fujian Province, China (Grant No. 2020J01464), the Fund from the Education Department of Fujian Province, China (Grant No. JAT190013), the Fund from the Fuzhou University, China (Grant No. GXRC-19044), and the Conselho Nacional de Desenvolvimento Científico e Tecnologico (BR) (CNPq) (Grant No. 309244/2018-8).
Corresponding Authors:  Yun-Dong Tang, Ming-Hua He     E-mail:  tangyundong@fzu.edu.cn;mhhe@fjmu.edu.cn

Cite this article: 

Yun-Dong Tang(汤云东), Jian Zou(邹建), Rodolfo C C Flesch(鲁道夫 C C 弗莱施), Tao Jin(金涛), and Ming-Hua He(何明华) Thermal apoptosis analysis considering injection behavior optimization and mass diffusion during magnetic hyperthermia 2022 Chin. Phys. B 31 014401

[1] Sharma S K, Shrivastava N, Rossi F, Tung L D and Thanh N T K 2019 Nano Today 29 100795
[2] Astefanoaei I, Dumitru I, Stancu A and Chiriac H 2014 Chin. Phys. B 23 044401
[3] Yu J, Huang D Y, Yousaf M Z, Hou Y L and Gao S 2013 Chin. Phys. B 22 027506
[4] Mahjoob S and Vafai K 2009 Int. J. Heat Mass Transfer 52 1608
[5] Thiebaut C and Lemonnier D 2002 Int. J. Therm. Sci. 41 500
[6] Salloum M, Ma R and Zhu L 2009 Int. J. Hyperther. 25 309
[7] Boroon M P, Ayani M B and Bazaz S R 2018 J. Therm. Biol. 72 127
[8] LeBrun A, Joglekar T, Bieberich C, Ma R H and Zhu L 2017 J. Heat Trans-T Asme 139 051101
[9] MacLellan C J, Fuentes D, Prabhu S, Rao G, Weinberg J S, Hazle J D and Stafford R J 2018 Int. J. Hyperther. 34 687
[10] Seehra M S, Singh V, Dutta P, Neeleshwar S, Chen Y Y, Chen C L, Chou S W and Chen C C 2010 J. Phys. D: Appl. Phys. 43 145002
[11] Celik O, Can M M and Firat T 2014 J. Nanopart. Res. 16 2321
[12] Yu X, Mi Y, Wang L C, Li Z R, Wu D A, Liu R S and He S L 2021 Chin. Phys. B 30 017503
[13] Zhang Z Q, Qian S, Wang R J and Zhu Z F 2019 Acta Phys. Sin. 68 054401 (in Chinese)
[14] Pennes H H 1948 J. Appl. Physiol. 1 93
[15] Yin Y, Ren Y, Li H and Qi H 2020 Int. J. Therm. Sci. 158 106533
[16] Wang H, Wu J N, Zhang X W, Liu Y, Zheng X, Zhuo Z H and Tang J T 2016 J. Med. Biol. Eng. 36 726
[17] Pearce J A 2015 J. Biomech. Eng. 137 121006
[18] He X M, Bhowmick S and Bischof J C 2009 J. Biomech. Eng. 131 074507
[19] Golneshan A A and Lahonian M 2011 Mech. Res. Commun. 38 425
[20] Abraham J P and Sparrow E M 2007 Int. J. Heat Mass Transfer 50 2537
[21] Paruch M 2018 Int. J. Therm. Sci. 130 507
[22] He X M and Bischof J C 2005 Ann. Biomed. Eng. 33 502
[23] Feng Y S, Oden J T and Rylander M N 2008 J. Biomech. Eng. 130 041016
[24] Bhowmick S, Swanlund D J and Bischof J C 2000 J. Biomech. Eng. 122 51
[25] Tang Y, Jin T and Flesch R C C 2017 IEEE Trans. Magn. 53 5400106
[26] Wang X D, Lin W J, Su C and Wang X M 2018 Chin. Phys. B 27 024302
[27] Rabienejhad M J, Mazaheri A and Davoudi-Darareh M 2021 Chin. Phys. B 30 048401
[28] Rosensweig R E 2002 J. Magn. Magn. Mater. 252 370
[29] Baxter L T and Jain R K 1989 Microvasc. Res. 37 77
[30] Sefidgar M, Soltani M, Raahemifar K, Bazmara H, Nayinian S M M and Bazargan M 2014 J. Biol. Eng. 8 12
[31] Moghadam M C, Deyranlou A, Sharifi A and Niazmand H 2015 Microvasc. Res. 101 62
[32] Zakariapour M, Hamedi M H and Fatouraee N 2017 Transport Porous Med. 116 251
[33] Yue K, Yu C, Lei Q C, Luo Y H and Zhang X X 2014 Appl. Therm. Eng. 69 11
[34] Siauve N, Nicolas L, Vollaire C and Marchal C 2004 Int. J. Hyperther. 20 815
[35] Kirkpatrick S 1984 J. Stat. Phys. 34 975
[1] Effect of bio-tissue deformation behavior due to intratumoral injection on magnetic hyperthermia
Yundong Tang(汤云东), Jian Zou(邹建), Rodolfo C.C. Flesch, and Tao Jin(金涛). Chin. Phys. B, 2023, 32(3): 034304.
[2] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[3] Hierarchical lichee-like Fe3O4 assemblies and their high heating efficiency in magnetic hyperthermia
Wen-Yu Li(李文宇), Wen-Tao Li(李文涛), Bang-Quan Li(李榜全), Li-Juan Dong(董丽娟), Tian-Hua Meng(孟田华), Ge Huo(霍格), Gong-Ying Liang(梁工英), and Xue-Gang Lu(卢学刚). Chin. Phys. B, 2021, 30(10): 104402.
[4] Effects of dipolar interactions on the magnetic hyperthermia of Zn0.3Fe2.7O 4 nanoparticles with different sizes
Xiang Yu(俞翔), Yan Mi(米岩), Li-Chen Wang(王利晨), Zheng-Rui Li(李峥睿), Di-An Wu(吴迪安), Ruo-Shui Liu(刘若水), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(1): 017503.
[5] Alternative constitutive relation for momentum transport of extended Navier-Stokes equations
Guo-Feng Han(韩国锋), Xiao-Li Liu(刘晓丽), Jin Huang(黄进), Kumar Nawnit, and Liang Sun(孙亮). Chin. Phys. B, 2020, 29(12): 124701.
[6] Evaluating physical changes of iron oxide nanoparticles due to surface modification with oleic acid
S Rosales, N Casillas, A Topete, O Cervantes, G Gonz\'alez, J A Paz, and M E Cano†. Chin. Phys. B, 2020, 29(10): 100502.
[7] An improved recommendation algorithm via weakening indirect linkage effect
Chen Guang (陈光), Qiu Tian (邱天), Shen Xiao-Quan (沈小泉). Chin. Phys. B, 2015, 24(7): 078901.
[8] Novel magnetic vortex nanorings/nanodiscs: Synthesis and theranostic applications
Liu Xiao-Li (刘晓丽), Yang Yong (杨勇), Wu Jian-Peng (吴建鹏), Zhang Yi-Fan (张艺凡), Fan Hai-Ming (樊海明), Ding Jun (丁军). Chin. Phys. B, 2015, 24(12): 127505.
[9] Nanomagnetism:Principles, nanostructures, and biomedical applications
Yang Ce (杨策), Hou Yang-Long (侯仰龙), Gao Song (高松). Chin. Phys. B, 2014, 23(5): 057505.
No Suggested Reading articles found!