Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 010505    DOI: 10.1088/1674-1056/ac0421
GENERAL Prev   Next  

Large-amplitude dust acoustic solitons in an opposite polarity dusty plasma with generalized polarization force

Mahmood A. H. Khaled1, Mohamed A. Shukri2, and Yusra A. A. Hager3,†
1 Department of Physics, Faculty of Education(Al-Mahweet), Sana'a University, Sana'a, Yemen;
2 Department of Physics, Faculty of Science, Sana'a University, Sana'a, Yemen;
3 Department of Physics, Faculty of Education, Sana'a University, Sana'a, Yemen
Abstract  Linear and nonlinear dust acoustic (DA) waves have been investigated in an opposite polarity dusty plasma comprising negatively and positively charged dust grains, Maxwellian electrons and ions, including the generalized polarization force effect. The properties of linear DA waves have been significantly altered by the dual dust polarity and polarization force. Large amplitude DA solitons have been discussed in the framework of the Sagdeev potential technique. Our results show that both rarefactive and compressive solitons can exist in such a dusty plasma. The basic features of the Sagdeev potential have been examined under the effect of the polarization force parameter R, the ratio of the charge number of the positive dust to that of the negative dust Z, and the Mach number M. The results show that these parameters play a significant role in determining the region of existence of large amplitude DA solitons.
Keywords:  large amplitude      opposite polarity dusty plasma      polarization force  
Received:  24 January 2021      Revised:  16 May 2021      Accepted manuscript online:  24 May 2021
PACS:  05.45.Yv (Solitons)  
  52.27.Lw (Dusty or complex plasmas; plasma crystals)  
  94.05.Fg (Solitons and solitary waves)  
Corresponding Authors:  Yusra A. A. Hager     E-mail:  hager22013@gmail.com

Cite this article: 

Mahmood A. H. Khaled, Mohamed A. Shukri, and Yusra A. A. Hager Large-amplitude dust acoustic solitons in an opposite polarity dusty plasma with generalized polarization force 2022 Chin. Phys. B 31 010505

[1] Rao N N, Shukla P K and Yu M Y 1990 Planet. Space. Sci. 38 543
[2] Barkan A, Merlino R L and D'Angelo N 1995 Phys. Plasmas 2 3563
[3] Malik H K, Tripathi K D and Sharma S K 1998 J. Plasma Phys. 60 265
[4] Mamun A A and Shukla P A 2001 Phys. Lett. A 290 173
[5] Shukla P A and Mamun A A 2003 New J.Phys. 5 17
[6] El-Labany S K, El-Taibany W F, Mamun A A and Moslem W M 2004 Phys. Plasmas 11 926
[7] El-Labany S K, El-Shamy E F, El-Taibany W F and Moslem W M 2007 Chaos Solitons Fractals 34 1393
[8] Tribeche M and Merriche A 2011 Phys. Plasmas 18 034502
[9] Ellis T A and Neff J S 1991 Icarus 91 280
[10] Havnes O, Trφim J, Blix T, Mortensen W, Naesheim L I, Thrane E and T?nnesen V 1996 J. Geophys. Res. 101 10839
[11] Horanyi M 1996 Annu. Rev. Astron. Astrophys. 34 383
[12] Shukla N, Shukla P K, Liu C S and Morfill G E 2007 J. Plasma Phys. 73 141
[13] Ali F S, Ali M A, Ali R A and Lncullet I I 1998 J. Electrost. 45 139
[14] Trigwell S, Grable N, Yurteri C U, Sharma R and Mazumder M K 2003 IEEE Trans. Ind. Appl. 39 79
[15] Zhao H, Castle G S P, Lnculet I I and Bailey A G 2003 IEEE Trans. Ind. Appl. 39 612
[16] Chow V W, Mendis D A and Rosenberg M 1993 J. Geophys. Res. 98 19065
[17] Rosenberg M and Mendis D A 1995 IEEE Trans. Plasma Sci. 23 177
[18] Rosenberg M, Mendis D A and Sheehan D P 1999 IEEE Trans. Plasma Sci. 27 239
[19] Shukla P K and Rosenberg M 2006 Phys. Scr. 73 196
[20] Mamun A A and Shukla P K 2002 Geophys. Res. Lett. 29 1870
[21] Sayed F and Mamun A A 2007 Phys. Plasmas 14 014501
[22] Maharaj S K, Bharuthram R, Singh S V, Pillay S R and Lakhina G S 2010 J. Plasma Phys. 76 441
[23] Mannan A and Mamun A A 2011 Phys. Rev. E 84 026408
[24] El-Taibany W F 2013 Phys. Plasmas 20 093701
[25] Mamun A A, Ferdousi M and Sultana S 2015 Phys. Scr. 90 088011
[26] Khaled M A H, Shukri M A and Hager Y A A 2019 Phys. Plasmas 26 103702
[27] Sagdeev R Z 1966 Reviews of Plasma Physics 4 23
[28] Chatterjee P and Kundu S K 2008 Indian J. Phys. 82 447
[29] Verheest F, Hellberg M A and Kourakis I 2008 Phys. Plasmas 15 112309
[30] Maharaj K, Bharuthram R, Singh S V, Pillay S R and Lakhina G S 2010 J. Plasma Phys. 76 441
[31] Ahmad Z, Mushtaq A and Mamun A A 2013 Phys. Plasmas 20 032302
[32] Abulwafa EM, Elhanbaly AM, Mahmoud A A and Al-Araby A F 2017 Phys. Plasmas 24 013704
[33] Hamaguchi S and Farouki R T 1994 Phys. Rev. E 49 4430
[34] Hamaguchi S and Farouki R T 1994 Phys. Plasmas 1 2110
[35] Khrapak S A, Ivlev A V, Yaroshenko V V and Morfill G E 2009 Phys. Rev. Lett. 102 245004
[36] El-Labany S K, El-Taibany W F, Behery E E and Zedan N A 2015 Eur. Phys. J. Plus 130 250
[37] Bentabet K, Mayout S and Tribeche M 2017 Physica A 466 492
[38] Singh K, Ghai Y, Kaur N and Saini N S 2018 Eur. Phys. J. D 72 160
[39] El-Taibany W F, El-Labany S K, Behery E E and Abdelghany A M 2019 Eur. Phys. J. Plus 134 457
[40] Bandyopadhyay P, Konopka U, Khrapak S A, Morfill G E and Sen A 2010 New J. Phys. 12 073002
[41] El-Taibany W F, Behery E E, El-Labany S K and Abdelghany A M 2019 Phys. Plasmas 26 063701
[1] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[2] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[3] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[4] Matrix integrable fifth-order mKdV equations and their soliton solutions
Wen-Xiu Ma(马文秀). Chin. Phys. B, 2023, 32(2): 020201.
[5] Localized nonlinear waves in a myelinated nerve fiber with self-excitable membrane
Nkeh Oma Nfor, Patrick Guemkam Ghomsi, and Francois Marie Moukam Kakmeni. Chin. Phys. B, 2023, 32(2): 020504.
[6] Charge self-trapping in two strand biomolecules: Adiabatic polaron approach
D Chevizovich, S Zdravković, A V Chizhov, and Z Ivić. Chin. Phys. B, 2023, 32(1): 010506.
[7] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[8] Reciprocal transformations of the space-time shifted nonlocal short pulse equations
Jing Wang(王静), Hua Wu(吴华), and Da-Jun Zhang(张大军). Chin. Phys. B, 2022, 31(12): 120201.
[9] Riemann-Hilbert approach and N double-pole solutions for a nonlinear Schrödinger-type equation
Guofei Zhang(张国飞), Jingsong He(贺劲松), and Yi Cheng(程艺). Chin. Phys. B, 2022, 31(11): 110201.
[10] Fusionable and fissionable waves of (2+1)-dimensional shallow water wave equation
Jing Wang(王静), Xue-Li Ding(丁学利), and Biao Li(李彪). Chin. Phys. B, 2022, 31(10): 100502.
[11] Quantum fields presentation and generating functions of symplectic Schur functions and symplectic universal characters
Denghui Li(李登慧), Fei Wang(王菲), and Zhaowen Yan(颜昭雯). Chin. Phys. B, 2022, 31(8): 080202.
[12] Oscillation properties of matter-wave bright solitons in harmonic potentials
Shu-Wen Guan(关淑文), Ling-Zheng Meng(孟令正), and Li-Chen Zhao(赵立臣). Chin. Phys. B, 2022, 31(8): 080506.
[13] Solutions of novel soliton molecules and their interactions of (2 + 1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation
Hong-Cai Ma(马红彩), Yi-Dan Gao(高一丹), and Ai-Ping Deng(邓爱平). Chin. Phys. B, 2022, 31(7): 070201.
[14] Nonlinear dynamical wave structures of Zoomeron equation for population models
Ahmet Bekir and Emad H M Zahran. Chin. Phys. B, 2022, 31(6): 060401.
[15] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
No Suggested Reading articles found!