|
|
Large-amplitude dust acoustic solitons in an opposite polarity dusty plasma with generalized polarization force |
Mahmood A. H. Khaled1, Mohamed A. Shukri2, and Yusra A. A. Hager3,† |
1 Department of Physics, Faculty of Education(Al-Mahweet), Sana'a University, Sana'a, Yemen; 2 Department of Physics, Faculty of Science, Sana'a University, Sana'a, Yemen; 3 Department of Physics, Faculty of Education, Sana'a University, Sana'a, Yemen |
|
|
Abstract Linear and nonlinear dust acoustic (DA) waves have been investigated in an opposite polarity dusty plasma comprising negatively and positively charged dust grains, Maxwellian electrons and ions, including the generalized polarization force effect. The properties of linear DA waves have been significantly altered by the dual dust polarity and polarization force. Large amplitude DA solitons have been discussed in the framework of the Sagdeev potential technique. Our results show that both rarefactive and compressive solitons can exist in such a dusty plasma. The basic features of the Sagdeev potential have been examined under the effect of the polarization force parameter R, the ratio of the charge number of the positive dust to that of the negative dust Z, and the Mach number M. The results show that these parameters play a significant role in determining the region of existence of large amplitude DA solitons.
|
Received: 24 January 2021
Revised: 16 May 2021
Accepted manuscript online: 24 May 2021
|
PACS:
|
05.45.Yv
|
(Solitons)
|
|
52.27.Lw
|
(Dusty or complex plasmas; plasma crystals)
|
|
94.05.Fg
|
(Solitons and solitary waves)
|
|
Corresponding Authors:
Yusra A. A. Hager
E-mail: hager22013@gmail.com
|
Cite this article:
Mahmood A. H. Khaled, Mohamed A. Shukri, and Yusra A. A. Hager Large-amplitude dust acoustic solitons in an opposite polarity dusty plasma with generalized polarization force 2022 Chin. Phys. B 31 010505
|
[1] Rao N N, Shukla P K and Yu M Y 1990 Planet. Space. Sci. 38 543 [2] Barkan A, Merlino R L and D'Angelo N 1995 Phys. Plasmas 2 3563 [3] Malik H K, Tripathi K D and Sharma S K 1998 J. Plasma Phys. 60 265 [4] Mamun A A and Shukla P A 2001 Phys. Lett. A 290 173 [5] Shukla P A and Mamun A A 2003 New J.Phys. 5 17 [6] El-Labany S K, El-Taibany W F, Mamun A A and Moslem W M 2004 Phys. Plasmas 11 926 [7] El-Labany S K, El-Shamy E F, El-Taibany W F and Moslem W M 2007 Chaos Solitons Fractals 34 1393 [8] Tribeche M and Merriche A 2011 Phys. Plasmas 18 034502 [9] Ellis T A and Neff J S 1991 Icarus 91 280 [10] Havnes O, Trφim J, Blix T, Mortensen W, Naesheim L I, Thrane E and T?nnesen V 1996 J. Geophys. Res. 101 10839 [11] Horanyi M 1996 Annu. Rev. Astron. Astrophys. 34 383 [12] Shukla N, Shukla P K, Liu C S and Morfill G E 2007 J. Plasma Phys. 73 141 [13] Ali F S, Ali M A, Ali R A and Lncullet I I 1998 J. Electrost. 45 139 [14] Trigwell S, Grable N, Yurteri C U, Sharma R and Mazumder M K 2003 IEEE Trans. Ind. Appl. 39 79 [15] Zhao H, Castle G S P, Lnculet I I and Bailey A G 2003 IEEE Trans. Ind. Appl. 39 612 [16] Chow V W, Mendis D A and Rosenberg M 1993 J. Geophys. Res. 98 19065 [17] Rosenberg M and Mendis D A 1995 IEEE Trans. Plasma Sci. 23 177 [18] Rosenberg M, Mendis D A and Sheehan D P 1999 IEEE Trans. Plasma Sci. 27 239 [19] Shukla P K and Rosenberg M 2006 Phys. Scr. 73 196 [20] Mamun A A and Shukla P K 2002 Geophys. Res. Lett. 29 1870 [21] Sayed F and Mamun A A 2007 Phys. Plasmas 14 014501 [22] Maharaj S K, Bharuthram R, Singh S V, Pillay S R and Lakhina G S 2010 J. Plasma Phys. 76 441 [23] Mannan A and Mamun A A 2011 Phys. Rev. E 84 026408 [24] El-Taibany W F 2013 Phys. Plasmas 20 093701 [25] Mamun A A, Ferdousi M and Sultana S 2015 Phys. Scr. 90 088011 [26] Khaled M A H, Shukri M A and Hager Y A A 2019 Phys. Plasmas 26 103702 [27] Sagdeev R Z 1966 Reviews of Plasma Physics 4 23 [28] Chatterjee P and Kundu S K 2008 Indian J. Phys. 82 447 [29] Verheest F, Hellberg M A and Kourakis I 2008 Phys. Plasmas 15 112309 [30] Maharaj K, Bharuthram R, Singh S V, Pillay S R and Lakhina G S 2010 J. Plasma Phys. 76 441 [31] Ahmad Z, Mushtaq A and Mamun A A 2013 Phys. Plasmas 20 032302 [32] Abulwafa EM, Elhanbaly AM, Mahmoud A A and Al-Araby A F 2017 Phys. Plasmas 24 013704 [33] Hamaguchi S and Farouki R T 1994 Phys. Rev. E 49 4430 [34] Hamaguchi S and Farouki R T 1994 Phys. Plasmas 1 2110 [35] Khrapak S A, Ivlev A V, Yaroshenko V V and Morfill G E 2009 Phys. Rev. Lett. 102 245004 [36] El-Labany S K, El-Taibany W F, Behery E E and Zedan N A 2015 Eur. Phys. J. Plus 130 250 [37] Bentabet K, Mayout S and Tribeche M 2017 Physica A 466 492 [38] Singh K, Ghai Y, Kaur N and Saini N S 2018 Eur. Phys. J. D 72 160 [39] El-Taibany W F, El-Labany S K, Behery E E and Abdelghany A M 2019 Eur. Phys. J. Plus 134 457 [40] Bandyopadhyay P, Konopka U, Khrapak S A, Morfill G E and Sen A 2010 New J. Phys. 12 073002 [41] El-Taibany W F, Behery E E, El-Labany S K and Abdelghany A M 2019 Phys. Plasmas 26 063701 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|