Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 104302    DOI: 10.1088/1674-1056/24/10/104302
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Wavefront modulation of water surface wave by a metasurface

Sun Hai-Tao (孙海涛)a, Cheng Ying (程营)a, Wang Jing-Shi (王敬时)b, Liu Xiao-Jun (刘晓峻)a
a Department of Physics, Nanjing University, Nanjing 210093, China;
b School of Electronics and Information, Nantong University, Nantong 226019, China
Abstract  We design a planar metasurface to modulate the wavefront of a water surface wave (WSW) on a deep sub-wavelength scale. The metasurface is composed of an array of coiling-up-space units with specially designed parameters, and can take on the work of steering the wavefront when it is pierced into water. Like their acoustic counterparts, the modulation of WSW is ascribed to the gradient phase shift of the coiling-up-space units, which can be perfectly tuned by changing the coiling plate length and channel number inside the units. According to the generalized Snell's law, negative refraction and ‘driven' surface mode of WSW are also demonstrated at certain incidences. Specially, the transmitted WSW could be efficiently guided out by linking a symmetrically-corrugated channel in ‘driven' surface mode. This work may have potential applications in water wave energy extraction and coastal protection.
Keywords:  metasurface      water surface wave      negative refraction      coiling up space  
Received:  12 May 2015      Revised:  17 June 2015      Accepted manuscript online: 
PACS:  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  47.35.-i (Hydrodynamic waves)  
  46.40.Cd (Mechanical wave propagation (including diffraction, scattering, and dispersion))  
  92.10.Sx (Coastal, estuarine, and near shore processes)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB921504), the National Natural Science Foundation of China (Grant Nos. 11474162, 11274171, 11274099, and 11204145), and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant Nos. 20110091120040 and 20120091110001).
Corresponding Authors:  Liu Xiao-Jun     E-mail:  chengying@nju.edu.cn;liuxiaojun@nju.edu.cn

Cite this article: 

Sun Hai-Tao (孙海涛), Cheng Ying (程营), Wang Jing-Shi (王敬时), Liu Xiao-Jun (刘晓峻) Wavefront modulation of water surface wave by a metasurface 2015 Chin. Phys. B 24 104302

[1] Josset C and Clément A H 2007 Renew. Energ. 32 1379
[2] Costa A, Osborne A R, Resio D T, Alessio S, Chriví E, Saggese E, Bellomo K and Long C E 2014 Phys. Rev. Lett. 113 108501
[3] McEwen G F 1911 Phys. Rev. 33 492
[4] Yates K L, Schoeman D S and Klein C J 2015 J. Environ. Manag. 152 201
[5] Tang Y F, Shen Y F, Yang J, Liu X H, Zi J and Hu X H 2006 Phys. Rev. E 73 035302(R)
[6] Zhang Y, Li Y, Shao H, Zhong Y Z, Zhang S and Zhao Z X 2012 Phys. Rev. E 85 066319
[7] Hu Y, Miao G Q and Wei R J 2009 Chin. Phys. Lett. 26 114303
[8] Linton C M and Evans D V 1990 J. Fluid Mech. 215 549
[9] Hu X H, Yang J, Zi J, Chan C T and Ho K M 2013 Sci. Rep. 3 1916
[10] Hu X H, Shen Y F, Liu X H, Fu R T and Zi J 2004 Phys. Rev. E 69 030201(R)
[11] Zigoneanu L, Popa B I and Cummer S A 2011 Phys. Rev. B 84 024305
[12] Chen H Y, Wang J F, Ma H, Qu S B, Zhang J Q, Xu Z and Zhang A X 2015 Chin. Phys. B 24 014201
[13] Li Y, Liang B, Gu Z M, Zou X Y and Cheng J C 2013 Sci. Rep. 3 2546
[14] Yi X N, Li Y, Liu Y C, Ling X H, Zhang Z Y and Luo H L 2014 Acta Phys. Sin. 63 094203(in Chinese)
[15] Zhao J J, Li B W, Chen Z N and Qiu C W 2013 Sci. Rep. 3 2537
[16] Xie Y B, Popa B I, Zigoneanu L and Cummer S A 2013 Phys. Rev. Lett. 110 175501
[17] Li Y, Liang B, Tao X, Zhu X F, Zou X Y and Cheng J C 2012 Appl. Phys. Lett. 101 233508
[18] Tang K, Qiu C Y, Lu J Y, Ke M Z and Liu Z Y 2015 J. Appl. Phys. 117 024503
[19] Ni X, Wu Y, Chen Z G, Zheng L Y, Xu Y L, Nayar P, Liu X P, Lu M H and Chen Y F 2014 Sci. Rep. 4 7038
[20] Yuan B G, Cheng Y and Liu X J 2015 Appl. Phys. Express 8 027301
[21] Liang Z X and Li J S 2012 Phys. Rev. Lett. 108 114301
[22] Li Z W, Huang L R, Lu K, Sun Y L and Min L 2014 Appl. Phys. Express 7 112001
[23] Liu P L F 1987 J. Fluid Mech. 179 371
[24] McKee W D 1999 Appl. Ocean Res. 21 145
[25] Ye Z 2003 Phys. Rev. E 67 036623
[26] Huang M J, Kuo C H and Ye Z 2005 Phys. Rev. E 71 011201
[27] Sun S L, He Q, Xiao S Y, Xu Q, Li X and Zhou L 2012 Nat. Mater. 11 426
[28] Xie Y B, Wang W Q, Chen H Y, Konneker A, Popa B I and Cummer S A 2014 Nat. Commun. 5 5553
[29] Tang K, Qiu C Y, Ke M Z, Lu J Y, Ye Y T and Liu Z Y 2014 Sci. Rep. 4 6517
[1] Nonreciprocal negative refraction in a dense hot atomic medium
Hai Yi(易海), Hongjun Zhang(张红军), and Hui Sun(孙辉). Chin. Phys. B, 2023, 32(4): 044202.
[2] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[6] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[7] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[8] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[9] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[10] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[11] Multiple bottle beams based on metasurface optical field modulation and their capture of multiple atoms
Xichun Zhang(张希纯), Wensheng Fu(付文升), Jinguang Lv(吕金光), Chong Zhang(张崇),Xin Zhao(赵鑫), Weiyan Li(李卫岩), and He Zhang(张贺). Chin. Phys. B, 2022, 31(8): 088103.
[12] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[13] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[14] Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平). Chin. Phys. B, 2022, 31(4): 040703.
[15] An ultra-wideband 2-bit coding metasurface using Pancharatnam—Berry phase for radar cross-section reduction
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新),Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2022, 31(3): 034204.
No Suggested Reading articles found!