CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Negative refractions by triangular lattice sonic crystals in partial band gaps |
S. Alagoza, B. B. Alagozb, A. Sahina, S. Nurc |
a Department of Physics, Inonu University, Malatya, Turkey;
b Department of Electrical and Electronics Engineering, Inonu University, Malatya, Turkey;
c Vocational School of Health Services, Medical Imaging Techniques, Inonu University, Malatya, Turkey |
|
|
Abstract This study numerically demonstrates the effects of partial band gaps on the negative refraction properties of sonic crystal. The partial band gap appearing at the second band edge leads to the efficient transmissions of scattered wave envelopes in the transverse directions inside triangular lattice sonic crystal, and therefore enhances the refraction property of sonic crystal. Numerical simulation results indicate a diagonal guidance of coupled scattered wave envelopes inside crystal structure at the partial band gap frequencies and then output waves are restored in the vicinity of the output interface of sonic crystal by combining phase coherent scattered waves according to Huygens' principles. This mechanism leads to two operations for wavefront engineering: one is spatial wavefront shifting operation and the other is convex-concave wavefront inversion operation. The effects of this mechanism on the negative refraction and wave focalization are investigated by using the finite difference time domain (FDTD) simulations. This study contributes to a better understanding of negative refraction and wave focusing mechanisms at the band edge frequencies, and shows the applications of the slab corner beam splitting and SC-air multilayer acoustic system.
|
Received: 17 July 2014
Revised: 04 September 2014
Accepted manuscript online:
|
PACS:
|
62.65.+k
|
(Acoustical properties of solids)
|
|
43.20.El
|
(Reflection, refraction, diffraction of acoustic waves)
|
|
43.20.Mv
|
(Waveguides, wave propagation in tubes and ducts)
|
|
Fund: Project supported by the Inonu Universty Scientific Research Projects Coordination Unit (Grant Nos. 2012/29 and 2013/56). |
Corresponding Authors:
S. Alagoz
E-mail: serkan.alagoz@inonu.edu.tr
|
Cite this article:
S. Alagoz, B. B. Alagoz, A. Sahin, S. Nur Negative refractions by triangular lattice sonic crystals in partial band gaps 2015 Chin. Phys. B 24 046201
|
[1] |
Pendry J B 2000 Phys. Rev. Lett. 85 3966
|
[2] |
Ozbay E, Aydın K, Bulut I and Guven K 2007 J. Phys. D: Appl. Phys. 40 2652
|
[3] |
Robillard J F, Bucay J, Deymier P A, Shelke A, Muralidharan K, Merheb B, Vasseur J O, Sukhovich A and Page J H 2011 Phys. Rev. B 83 224301
|
[4] |
Feng Z F, Wang X G, Li Z Y and Zhang D Z 2008 Chin. Phys. B 17 1101
|
[5] |
Feng Z, Zhang X, Wang Y, Li Z Y, Cheng B and Zhang D Z 2005 Phys. Rev. Lett. 94 247402
|
[6] |
Miyashita T 2005 Meas. Sci. Technol. 16 47
|
[7] |
Pichard H, Richoux O and Groby J P 2012 J. Acoust. Soc. Am. 132 2816
|
[8] |
Martinez-Salaa R, Rubioa C, Garcia-Raffib L M, Sanchez-Pereza J V, Sanchez-Pereza E A and Llinaresa J 2006 J. Sound. Vib. 29 100
|
[9] |
Pico R, Sanchez-Morcillo V J, Perez-Arjona I and Staliunas K 2012 Appl. Acoust. 73 302
|
[10] |
Pico R, Perez-Arjona I, Sanchez-Morcillo V and Staliunas K 2013 Appl. Acoust. 74 945
|
[11] |
Alagoz S 2014 Appl. Acoust. 76 402
|
[12] |
Cheng J, Zhang D, Liang B, Guo X and Tu J 2012 J. Acoust. Soc. Am. 131 3281
|
[13] |
Boechler N, Theocharis G and Daraio C 2011 Nat. Mater. Lett. 10 665
|
[14] |
Alagoz S and Alagoz B B 2013 J. Acoust. Soc. Am. 133 EL485
|
[15] |
Salima D, Youcef B, Amar B and Tarek T 2012 Chin. Phys. Lett. 29 044301
|
[16] |
Jiang H, Zhang M L, Wang Y R, Hu Y P, Lan D and Wei B C 2009 Chin. Phys. Lett. 26 106202
|
[17] |
Cai C, Zhu X F, Chen Q, Yuan Y, Liang B and Cheng J C 2011 Chin. Phys. B 20 116301
|
[18] |
Ni Q and Cheng J C 2005 Chin. Phys. Lett. 22 2305
|
[19] |
Jin L, Zhu Q Y, Fu Y Q and Yu W X 2013 Chin. Phys. B 22 104101
|
[20] |
Jin L, Zhu Q Y and Fu Y Q 2013 Chin. Phys. B 22 094102
|
[21] |
Sukhovich A, Jing L and Page J H 2008 Phys. Rev. B 77 014301
|
[22] |
Yang S, Page J H, Liu Z, Cowan M L, Chan C T and Sheng P 2004 Phys. Rev. Lett. 93 024301
|
[23] |
Feng L, Liu X P, Chen Y B, Huang Z P, Mao Y W, Chen Y F, Zi J and Zhu Y Y 2005 Phys. Rev. B 72 033108
|
[24] |
Alagoz S 2012 Chin. Phys. B 21 126202
|
[25] |
Hou L N, Hou Z L and Fu X J 2014 Acta Phys. Sin. 63 034305 (in Chinese)
|
[26] |
Cheng C, Wu F G, Zhang X and Yao Y W 2014 Acta Phys. Sin. 63 024301 (in Chinese)
|
[27] |
Qiu C, Zhang X and Liu Z 2005 Phys. Rev. B 71 054302
|
[28] |
Zhang X D 2004 Phys. Rev. B 70 205102
|
[29] |
Kuo C H and Ye Z 2003 arXiv: cond-mat/0310423 1-8
|
[30] |
Ozbay E, Bulut I, Aydin K, Caglayan H, Alici K B and Guven K 2005 Laser Phys. 15 217
|
[31] |
Sun G and Kirk A G 2008 Opt. Express 16 4330
|
[32] |
Chen L S, Kuo C H and Ye Z 2004 Appl. Phys. Lett. 85 1072
|
[33] |
He Z, Li X, Deng K, Mei J and Liu Z 2009 Europhys. Lett. 87 57003
|
[34] |
Li S, George T F, Chen L S, Sun X and Kuo C H 2006 Phys. Rev. E 73 056615
|
[35] |
Feng L, Liu X P, Lu M H, Chen Y B, Chen Y F, Mao Y W, Zi J, Zhu Y Y, Zhu S N and Ming N B 2006 Phys. Rev. Lett. 96 014301
|
[36] |
Serway R A and Jewett J W 2012 Principles of Physics: Calculus, 5th edn. Cengage Learning
|
[37] |
Lu M H, Zhang C, Feng L, Zhao J, Chen Y F, Mao Y W, Zi J, Zhu Y Y, Zhu S N and Ming N B 2007 Nat. Mater. 6 744
|
[38] |
Sanchez-Morcillo V J, Staliunas K, Espinosa V, Pérez-Arjona I, Redondo J and Soliveres E 2009 Phys. Rev. B 80 134303
|
[39] |
Su Z, Timurdogan E, Hosseini E S, Sun J, Leake G, Coolbaugh D D and Watts M R 2014 Opt. Lett. 39 965
|
[40] |
Wu F G, Liu Z Y and Liu Y Y 2004 Phys. Rev. E 69 066609
|
[41] |
Wen J, Yu D, Cai L and Wen X 2009 J. Phys. D: Appl. Phys. 42 115417
|
[42] |
Cicek A, Kaya O A and Ulug B 2013 Chin. Phys. B 22 114301
|
[43] |
Alagoz S and Alagoz B B 2013 Chin. Phys. B 22 076201
|
[44] |
Olsson R H and El-Kady I 2009 Meas. Sci. Technol. 20 012002
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|