Special Issue:
SPECIAL TOPIC — Twistronics
|
|
|
Bilayer twisting as a mean to isolate connected flat bands in a kagome lattice through Wigner crystallization |
Jing Wu(吴静)1,2, Yue-E Xie(谢月娥)1,2,†, Ming-Xing Chen(陈明星)3, Jia-Ren Yuan(袁加仁)2, Xiao-Hong Yan(颜晓红)2, Sheng-Bai Zhang(张绳百)4, and Yuan-Ping Chen(陈元平)1,2,‡ |
1 School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China; 2 Faculty of Science, Jiangsu University, Zhenjiang 212013, China; 3 School of Physics and Electronics, Hunan Normal University, Changsha 410081, China; 4 Department of Physics, Applied Physics, and Astronomy Rensselaer Polytechnic Institute, Troy, New York 12180, USA |
|
|
Abstract The physics of flat band is novel and rich but difficult to access. In this regard, recently twisting of bilayer van der Waals (vdW)-bounded two-dimensional (2D) materials has attracted much attention, because the reduction of Brillouin zone will eventually lead to a diminishing kinetic energy. Alternatively, one may start with a 2D kagome lattice, which already possesses flat bands at the Fermi level, but unfortunately these bands connect quadratically to other (dispersive) bands, leading to undesirable effects. Here, we propose, by first-principles calculation and tight-binding modeling, that the same bilayer twisting approach can be used to isolate the kagome flat bands. As the starting kinetic energy is already vanishingly small, the interlayer vdW potential is always sufficiently large irrespective of the twisting angle. As such the electronic states in the (connected) flat bands become unstable against a spontaneous Wigner crystallization, which is expected to have interesting interplays with other flat-band phenomena such as novel superconductivity and anomalous quantum Hall effect.
|
Received: 28 October 2020
Revised: 21 December 2020
Accepted manuscript online: 04 January 2021
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
73.21.Ac
|
(Multilayers)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11874314). Sheng-Bai Zhang was supported by U.S. DOE under Grant No. DE-SC0002623. |
Corresponding Authors:
Yue-E Xie, Yuan-Ping Chen
E-mail: yueex@ujs.edu.cn;chenyp@xtu.edu.cn
|
Cite this article:
Jing Wu(吴静), Yue-E Xie(谢月娥), Ming-Xing Chen(陈明星), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Sheng-Bai Zhang(张绳百), and Yuan-Ping Chen(陈元平) Bilayer twisting as a mean to isolate connected flat bands in a kagome lattice through Wigner crystallization 2021 Chin. Phys. B 30 077104
|
[1] Deacon R, Chuang K C, Nicholas R, Novoselov K and Geim A 2007 Phys. Rev. B 76 081406 [2] de Juan F, Sturla M and Vozmediano M A 2012 Phys. Rev. Lett. 108 227205 [3] Yamoah M A, Yang W, Pop E and Goldhaber-Gordon D 2017 ACS Nano 11 9914 [4] Wang K, Qu C, Wang J, Ouyang W, Ma M, Zheng Q 2019 ACS Appl. Mater 11 36169 [5] Dai S, Xiang Y and Srolovitz D J 2016 Nano Lett. 16 5923 [6] Schmidt H, Rode J C, Smirnov D and Haug R J 2014 Nat. Commun. 5 5742 [7] Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F and Dean C R 2019 Science 363 1059 [8] Po H C, Zou L J, Vishwanath A and Senthil T 2018 Phys. Rev. X 8 031089 [9] Liu C C, Zhang L D, Chen W Q and Yang F 2018 Phys. Rev. Lett. 121 217001 [10] Lian B, Wang Z and Bernevig B A 2019 Phys. Rev. Lett. 122 257002 [11] Xu C and Balents L 2018 Phys. Rev. Lett. 121 087001 [12] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 [13] Lu X, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T and Zhang G 2019 Nature 574 653 [14] Kang J and Vafek O 2019 Phys. Rev. Lett. 122 246401 [15] Kerelsky A, McGilly L J, Kennes D M, Xian L, Yankowitz M, Chen S, Watanabe K, Taniguchi T, Hone J and Dean C 2019 Nature 572 95 [16] Codecido E, Wang Q, Koester R, Che S, Tian H, Lv R, Tran S, Watanabe K, Taniguchi T and Zhang F 2019 Sci. Adv. 5 eaaw9770 [17] Rademaker L and Mellado P 2018 Phys. Rev. B 98 235158 [18] Jiang Y, Lai X, Watanabe K, Taniguchi T, Haule K, Mao J and Andrei E Y 2019 Nature 573 91 [19] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, SanchezYamagishi J D, Watanabe K, Taniguchi T and Kaxiras E 2018 Nature 556 80 [20] Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T and Jarillo-Herrero P 2019 arXiv: 1903.08596 [21] Wang W, Shi Y, Zakharov A A, Syvaäjärvi M, Yakimova R, Uhrberg R I and Sun J 2018 Nano Lett. 18 5862 [22] Liu Z, Li Y and Yang Y 2019 Chin. Phys. B 28 077103 [23] Xie Y, Lian B, Jäck B, Liu X, Chiu C L, Watanabe K, Taniguchi T, Bernevig B A and Yazdani A 2019 Nature 572 101 [24] Wong D, Nuckolls K P, Oh M, Lian B, Xie Y, Jeon S, Watanabe K, Taniguchi T, Bernevig B A and Yazdani A 2020 Nature 582 198 [25] Shi H, Zhan Z, Qi Z, Huang K, van Veen E, Silva-Guillén J Á, Zhang R, Li P, Xie K and Ji H 2020 Nat. Commun. 11 1 [26] Yin J, Wang H, Peng H, Tan Z, Liao L, Lin L, Sun X, Koh A L, Chen Y, Peng H and Liu Z 2016 Nat. Commun. 7 10699 [27] Wang Y, Su Z, Wu W, Nie S, Xie N, Gong H, Guo Y, Hwan Lee J, Xing S and Lu X 2013 Appl. Phys. Lett. 103 123101 [28] Lu C C, Lin Y C, Liu Z, Yeh C H, Suenaga K and Chiu P W 2013 ACS Nano 7 2587 [29] Ta H Q, Perello D J, Duong D L, Han G H, Gorantla S, Nguyen V L, Bachmatiuk A, Rotkin S V, Lee Y H and Rümmeli M H 2016 Nano Lett. 16 6403 [30] Xing S, Wu W, Wang Y, Bao J and Pei S S 2013 Chem. Phys. Lett. 580 62 [31] Kalbac M, Frank O, Kong J, Sanchez-Yamagishi J, Watanabe K, Taniguchi T, Jarillo-Herrero P and Dresselhaus M S J T 2012 J. Phys. Chem. Lett. 3 796 [32] Cheng Y, Huang C, Hong H, Zhao Z and Liu K J C P B 2019 Chin. Phys. B 28 107304 [33] Xian L, Kennes D M, Tancognedejean N, Altarelli M and Rubio A 2019 Nano Lett. 19 4934 [34] Hu G, Ou Q, Si G, Wu Y, Wu J, Dai Z, Krasnok A, Mazor Y, Zhang Q, Bao Q, Qiu C W and Alú A 2020 Nature 582 209 [35] Guinea F and Walet N R 2019 Phys. Rev. B 99 205134 [36] Carr S, Massatt D, Fang S, Cazeaux P, Luskin M and Kaxiras E 2017 Phys. Rev. B 95 075420 [37] David A, Rakyta P, Kormányos A and Burkard G 2019 Phys. Rev. B 100 085412 [38] Liu Y, Wang G, Huang Q, Guo L and Chen X 2012 Phys. Rev. Lett. 108 225505 [39] Wang Z, Tang C, Sachs R, Barlas Y and Shi J 2015 Phys. Rev. Lett. 114 016603 [40] Ferguson D, Searles D J, Hankel M 2017 ACS Appl. Mater. 9 20577 [41] Fan Q, Martin-Jimenez D, Ebeling D, Krug C K, Brechmann L, Kohlmeyer C, Hilt G, Hieringer W, Schirmeisen A and Gottfried J M 2019 J. Am. Chem. Soc. 141 17713 [42] Mao J, Zhang H, Jiang Y, Pan Y, Gao M, Xiao W and Gao H J 2009 J. Am. Chem. Soc. 131 14136 [43] Zhou M, Liu Z, Ming W, Wang Z and Liu F 2014 Phys. Rev. Lett. 113 236802 [44] You J Y, Gu B and Su G 2019 Sci. Rep. 9 20116 [45] Tasaki H 1992 Phys. Rev. Lett. 69 1608 [46] Mielke A and General 1991 J. Phys. A: Math. Gen. 24 3311 [47] Wigner E 1934 Phys. Rev. 46 1002 [48] Padhi B, Setty C and Phillips P W 2018 Nano Lett. 18 6175 [49] Wu C, Bergman D, Balents L and Sarma S D 2007 Phys. Rev. Lett. 99 070401 [50] Bilitewski T and Moessner R 2018 Phys. Rev. B 98 235109 [51] Zhang F, Jung J, Fiete G A, Niu Q and MacDonald A H 2011 Phys. Rev. Lett. 106 156801 [52] Liu J, Ma Z, Gao J and Dai X 2019 Phys. Rev. X 9 031021 [53] Kopnin N, Heikkilä T and Volovik G 2011 Phys. Rev. B 83 220503 [54] Volovik G E 2018 JETP Lett. 107 516 [55] Sun K, Gu Z, Katsura H and Das Sarma S 2011 Phys. Rev. Lett. 106 236803 [56] Zhang Y, Mossman M E, Busch T, Engels P and Zhang C 2016 Front. Phys. 11 118103 [57] Pal B and Saha K 2018 Phys. Rev. B 97 195101 [58] Chen Y, Xu S, Xie Y, Zhong C, Wu C and Zhang S 2018 Phys. Rev. B 98 035135 [59] Shallcross S, Sharma S, Kandelaki E and Pankratov O 2010 Phys. Rev. B 81 165105 [60] Zou L, Po H C, Vishwanath A and Senthil T 2018 Phys. Rev. B 98 085435 [61] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104 [62] Smith D G, Burns L A, Patkowski K and Sherrill C D 2016 J. Phys. Chem. Lett. 7 2197 [63] Papaconstantopoulos D and Mehl M 2003 J. Phys.: Condens. Matter 15 R413 [64] Moon P and Koshino M 2012 Phys. Rev. B 85 195458 [65] Koshino M, Yuan N F Q, Koretsune T, Ochi M, Kuroki K and Fu L 2018 Phys. Rev. X 8 031087 [66] Trambly de Laissardi'ere G, Mayou D and Magaud L 2010 Nano Lett. 10 804 [67] Miyahara S, Kubo K, Ono H, Shimomura Y and Furukawa N 2005 J. Phys. Soc. Jpn. 74 1918 [68] Leykam D and Flach S 2018 APL Photon. 3 070901 [69] Green D, Santos L and Chamon C 2010 Phys. Rev. B 82 075104 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|