CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
High-energy pulse generation using Yb-doped Q-switched fiber laser based on single-walled carbon nanotubes |
Wang Jun-Li (王军利)a, Wang Xue-Ling (汪雪玲)a, He Bo-Rong (贺博荣)a, Zhu Jiang-Feng (朱江峰)a, Wei Zhi-Yi (魏志义)b, Wang Yong-Gang (王勇刚)c |
a School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China; b Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; c State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China |
|
|
Abstract An all-fiber laser using a single-walled carbon nanotube (SWCNT) as the saturable absorber (SA) for Q-switched operation in the 1031 nm region is demonstrated in this work. A lasing threshold as low as 17 mW was realized for continuous wave operation. By further increasing the pump power, stable Q-switched pulse trains are obtained when the pump power ranges from 38 mW to 125 mW, corresponding to repetition rate varying from 40.84 kHz to 66.24 kHz, the pulse width from 2.0 μs to 1.0 μs, and the highest single pulse energy of 40.6 nJ respectively.
|
Received: 03 March 2015
Revised: 02 April 2015
Accepted manuscript online:
|
PACS:
|
76.30.Kg
|
(Rare-earth ions and impurities)
|
|
42.55.Wd
|
(Fiber lasers)
|
|
42.60.Gd
|
(Q-switching)
|
|
88.30.rh
|
(Carbon nanotubes)
|
|
Fund: Project supported by the National Key Scientific Instruments Development Program of China (Grant No. 2012YQ120047). |
Corresponding Authors:
Wang Jun-Li
E-mail: dispersion@126.com
|
Cite this article:
Wang Jun-Li (王军利), Wang Xue-Ling (汪雪玲), He Bo-Rong (贺博荣), Zhu Jiang-Feng (朱江峰), Wei Zhi-Yi (魏志义), Wang Yong-Gang (王勇刚) High-energy pulse generation using Yb-doped Q-switched fiber laser based on single-walled carbon nanotubes 2015 Chin. Phys. B 24 097601
|
[1] |
Dupriez P, Finot C, Malinowski A, Sahu J K, Nilsson J, Richardson D J, Wilcox K G, Foreman H D and Tropper A C 2006 Opt. Express 14 9611
|
[2] |
Leigh M, Shi W, Zong J, Wang J, Jiang S and Peyghambarian N 2007 Opt. Lett. 32 897
|
[3] |
Ancona A, Döring S, Jauregui C, Röser F, Limpert J, Nolte S and Tünnermann A 2009 Opt. Lett. 34 3304
|
[4] |
Lou Q H 2010 High Power Fiber Lasers and its Applications (Beijing: Press of University of Science and Technology of China) p. 8 (in Chinese)
|
[5] |
Huang X J, Liu Y Z, Sui Z, Li M Z, Lin H H, Wang J J, Zhao D S and Chen H Y 2004 High Power Laser and Particle Beams 16 1531 (in Chinese)
|
[6] |
Ouyang C M, Chai L, Zhao H, Song Y J, Hu M L and Wang Q Y 2010 Chin. Phys. Soc. 59 3936 (in Chinese)
|
[7] |
Baumgartl M, Jansen F, Stutzki F, Jauregui C, Ortač B, Limpert J and Tünnermann A 2011 Opt. Lett. 36 244
|
[8] |
Chong A, Buckley J, Renninger W and Wise F K 2006 Opt. Express 14 10095
|
[9] |
Pierrot S, Saby J, Bertrand A, Liegeois F, Duterte C, Coquelin B, Hernandez Y, Salin F and Giannone D 2010 Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America), paper CFD3
|
[10] |
Kelleher E J R, Travers J C, Sun Z, Rozhin A G, Ferrari A C, Popov S V and Taylor J R Appl. Phys. Lett. 95 1111081
|
[11] |
Chen X, Xiao Q R, Jin G Y, Yan P and Gong M L 2014 Chin. Phys. B 23 064218
|
[12] |
Alvarez-Chavez J A, Offerhaus H L, Nilson J, Turner P W, Clarkson W A and Richardson D J 2000 Opt. Lett. 25 37
|
[13] |
Fan Y X, Lu F Y, Hu S L, Lu K C, Wang H J, Dong X Y, He J L and Wang H T 2004 Opt. Lett. 29 724
|
[14] |
Ahmad F, Harun S W, Nor R M, Zulkepely N R, Ahmad H and Shum P 2013 Chin. Phys. Lett. 30 054210
|
[15] |
Shohda F, Nakazawa M, Mata J and Tsukamoto J 2010 Opt. Express 18 9712
|
[16] |
Mao D, Liu X M and Lu H 2012 Opt. Lett. 37 2619
|
[17] |
Yun L, Liu X M and Han D D 2014 Opt. Express 22 5442
|
[18] |
Liu W J, Han H N, Zhang L, Wang R and Wei Z Y 2014 J. Mod. Opt. 61 773
|
[19] |
Kobtsev S M, Kukarin S V and Fedotov Y S 2011 Laser Phys. 21 283
|
[20] |
Li X H, Wang Y G, Wang Y S, Hu X H, Zhao W, Liu X L, Yu J, Gao C X, Zhang W, Yang Z, Li C and Shen D Y 2012 IEEE Photon. J. 4 234
|
[21] |
Li X H,Wang Y G, Wang Y S, Wang Q J, Zhao W, Zhang Y Z, Ya X and Zhang Y 2013 International Nanoelectronics Conference p. 139
|
[22] |
Wang Y G, Chen H R, Wen X M, Wen F H and Jau T 2012 Opt. Commun. 285 1891
|
[23] |
Liu X M, Wang Y G, Li X H, Wang Y S, Zhao W, Hu X H, Zhang W, Wang H S, Yang Z, Shen D Y, Li C, Chen G D and Tsang Y H 2013 Opt. Fiber Technol. 19 200
|
[24] |
Liu X M 2010 Phys. Prev. A 81 023811
|
[25] |
Liu X M, Han D D, Sun Z P, Zeng C, Lu H, Mao D, Cui Y D and Wang F Q 2013 Sci. Rep. 3 2718
|
[26] |
Wang J L, Bu X B, Wang R, Zhang L, Zhu J F, Teng H, Han H N and Wei Z Y 2014 Appl. Opt. 53 5088
|
[27] |
Liu X M, Cui Y D, Han D D, Yao X K and Sun Z P 2015 Sci. Rep. 5 9101
|
[28] |
Han D D, Liu X M, Cui Y D, Wang G X, Zeng C and Yun L 2014 Opt. Lett. 39 1565
|
[29] |
Yu Z H, Song Y R, Tian C C, Li J, Zhang X and Wang Y G 2012 In: Proceedings of the SPIE High-Power Lasers and Applications VI, p. 855115
|
[30] |
Al-Masoodi A H H, Ismail M F, Ahmad F, Kasim N, Yusof M, Ahmad H and Sulaiman W H 2014 Microw. Opt. Techn. Lett. 56 1770
|
[31] |
Li P X, Yao Y F, Chi J J, Hu H W, Yang C, Zhao Z Q and Zhang G J 2014 Opt. Commun. 332 187
|
[32] |
Luo Z Q, Zhou M, Weng J, Huang G M, Xu H Y, Ye C C and Cai Z P 2010 Opt. Lett. 35 3709
|
[33] |
Lu F Y, Fan Y X, Wang H J, Hu S L, Dai W T, Xu Z G, Lv K C and Dong X Y 2003 Chin. J. Lasers 30 1057 (in Chinese)
|
[34] |
Liu J, Wu S D, Yang Q H and Wang P 2011 Opt. Lett. 36 4008
|
[35] |
Luo Z Q, Liu C, Huang Y Z, Wu D D, Wu J Y, Xu H Y, Cai Z P, Lin Z Q, Sun L P and Weng J 2014 IEEE J. Sel. Top. Quantum Electron 20 0902708
|
[36] |
Luo Z Q, Huang Y Z, Zhong M, Li Y Y, Wu J Y, Xu B, Xu H Y, Cai Z P, Peng J and Weng J 2014 IEEE J. Lightw. Technol. 32 4077
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|