Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 044211    DOI: 10.1088/1674-1056/abe3eb
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High-efficiency terahertz wave generation with multiple frequencies by optimized cascaded difference frequency generation

Zhongyang Li(李忠洋)1,†, Binzhe Jiao(焦彬哲)1, Wenkai Liu(刘文锴)2, Qingfeng Hu(胡青峰)2, Gege Zhang(张格格)1, Qianze Yan(颜钤泽)1, Pibin Bing(邴丕彬)1, Fengrui Zhang(张风蕊)1, Zhan Wang(王湛)1, and Jianquan Yao(姚建铨)3
1 College of Electric Power, North China University of Water Resources and Electric Power, Zhengzhou 450045, China;
2 College of Surveying and Geo-informatics, North China University of Water Resources and Electric Power, Zhengzhou 450045, China;
3 College of Precision Instrument and Opto-electronics Engineering, Institute of Laser and Opto-electronics, Tianjin University, Tianjin 300072, China
Abstract  High-efficiency terahertz (THz) wave generation with multiple frequencies by optimized cascaded difference frequency generation (OCDFG) is investigated at 100 K using a nonlinear crystal consisting of a periodically poled lithium niobate (PPLN) part and an aperiodically poled lithium niobate (APPLN) part. Two infrared pump waves with a frequency difference ω T1 generate THz waves and a series of cascaded optical waves in the PPLN part by cascaded difference frequency generation (CDFG). The generated cascaded optical waves with frequency interval ω T1 then further interact in the APPLN part by OCDFG, yielding the following two advantages. First, OCDFG in the APPLN part is efficiently stimulated by inputting multi-order cascaded optical waves rather than the only two intense infrared pump waves, yielding unprecedented energy conversion efficiencies in excess of 37% at 1 THz at 100 K. Second, THz waves with M times ω T1 are generated by mixing the mth-order and the (m+M)th-order cascaded optical waves by designing poling period distributions of the APPLN part.
Keywords:  terahertz wave generation      optimized cascaded difference frequency generation      aperiodically poled lithium niobate  
Received:  11 January 2021      Revised:  03 February 2021      Accepted manuscript online:  07 February 2021
PACS:  42.65.Yj (Optical parametric oscillators and amplifiers)  
  42.65.Dr (Stimulated Raman scattering; CARS)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61735010, 31671580, and 61601183), the Natural Science Foundation of Henan Province, China (Grant No. 162300410190), and Program for Science &Technology Innovation Talents in Universities of Henan Province, China (Grant No. 18HASTIT023).
Corresponding Authors:  Corresponding author. E-mail: thzwave@163.com   

Cite this article: 

Zhongyang Li(李忠洋), Binzhe Jiao(焦彬哲), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Gege Zhang(张格格), Qianze Yan(颜钤泽), Pibin Bing(邴丕彬), Fengrui Zhang(张风蕊), Zhan Wang(王湛), and Jianquan Yao(姚建铨) High-efficiency terahertz wave generation with multiple frequencies by optimized cascaded difference frequency generation 2021 Chin. Phys. B 30 044211

1 Ho L, Pepper M and Taday P 2008 Nat. Photon. 2 541
2 Federici J F, Schulkin B, Huang F, Gary D, Barat R, Oliveira F and Zimdars D2005 Semicond. Sci. Technol. 20 S266
3 Amenabar I, Lopez F and Mendikute A 2013 J. Infrared, Millimeter, Terahertz Waves 34 152
4 Bonetti S, Hoffmann M C, Sher M J, Chen Z, Yang S H, Samant M G, Parkin S S P and Dürr H A 2016 Phys. Rev. Lett. 117 087205
5 Nova T F, Cartella A, Cantaluppi A, Först M, Bossini D, Mikhaylovskiy R V, Kimel A V, Merlin R and Cavalleri A 2017 Nat. Phys. 13 132
6 Shen Y C and Taday P F 2008 IEEE J. Sel. Top. Quantum Electron. 14 407
7 Karali\=unas M, Nasser K E, Urbanowicz A, Ka\vsalynas I, Bra\vzinskien\.e D, Asadauskas S and Valu\vsis G 2018 Sci. Rep. 8 1
8 Kleine-Ostmann T and Nagatsuma T 2011 J. Infrared, Millimeter, Terahertz Waves 32 143
9 Li Z Y, Sun X Q, Zhang H T, Li Y J, Yuan B, Jiao B Z, Zhao J, Tan L, Bing P B, Wang Z and Yao J Q 2020 J. Opt. Soc. Am. B 37 2416
10 Liu P X, Xu D G, Yu H, Zhang H, Li Z X, Zhong K, Wang Y Y and Yao J Q 2013 J. Light. Technol. 31 2508
11 Saito K, Tanabe T and Oyama Y 2015 J. Opt. Soc. Am. B 32 617
12 Ravi K, Hemmer M, Cirmi G, Reichert F, Schimpf D N, Mücke O D and Kärtner F X 2016 Opt. Lett. 41 3806
13 Ravi K, Schimpf D N and Kärtner F X 2016 Opt. Express 24 25582
14 Li Z Y, Sun X Q, Li Y J, Yuan B, Zhang H T, Bing P B, Wang Z and Yao J Q 2020 Opt. Lasers Eng. 128 106035
15 Kawase K, Shikata J and Ito H2001 J. Phys. D: Appl. Phys. 34 R1
16 Jundt D H 1997 Opt. Lett. 22 1553
17 Pàlfalvi L, Hebling J, Kuhl J, \'Pter à and Polgàr K 2005 J. Appl. Phys. 97 123505
18 Carbajo S2015 Stanford Linear Accelerator Center(Personal Communication)
19 Xu G, Mu X, Ding Y J and Zotova I B 2009 Opt. Lett. 34 995
20 L'huillier J, Torosyan G, Theuer M, Avetisyan Y and Beigang R 2007 Appl. Phys. B 86 197
[1] THz wave generation by repeated and continuous frequency conversions from pump wave to high-order Stokes waves
Zhongyang Li(李忠洋), Qianze Yan(颜钤泽), Pengxiang Liu(刘鹏翔), Binzhe Jiao(焦彬哲), Gege Zhang(张格格), Zhiliang Chen(陈治良), Pibin Bing(邴丕彬), Sheng Yuan(袁胜), Kai Zhong(钟凯), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(7): 074209.
[2] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[3] Theoretical research on terahertz wave generation from planar waveguide by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Jia Zhao(赵佳), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Yongjun Li(李永军), Binzhe Jiao(焦彬哲), Pibin Bing(邴丕彬), Hongtao Zhang(张红涛), Lian Tan(谭联), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(2): 024209.
No Suggested Reading articles found!