Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 047104    DOI: 10.1088/1674-1056/abe3f7
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles calculations of F-, Cl-, and N-related defects of amorphous SiO 2 and their impacts on carrier trapping and proton release

Xin Gao(高鑫)1, Yunliang Yue(乐云亮)2, Yang Liu(刘杨)3,4, and Xu Zuo(左旭)1,5,6,†
1 College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China;  2 School of Information Engineering, Yangzhou University, Yangzhou 225127, China;  3 Microsystem and Terahertz Research Center, China Academy of Engineering Physics, Chengdu 610200, China;  4 Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621999, China;  5 Municipal Key Laboratory of Photo-electronic Thin Film Devices and Technology, Nankai University, Tianjin 300071, China;  6 Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, Tianjin 300071, China
Abstract  The first-principles calculations based on density functional theory are performed to study F-, Cl-, and N-related defects of amorphous SiO2 (a-SiO2) and their impacts on carrier trapping and proton release. The possible geometric configurations of the impurity-related defects, the formation energies, the hole or electron trapping of the neutral defects, and the mechanisms to suppress proton diffusion by doping N are investigated. It is demonstrated by the calculations that the impurity atoms can interact with the oxygen vacancies and result in impurity-related defects. The reactions can be utilized to saturate oxygen vacancies that will cause ionization damage to the semiconducting devices. Moreover, the calculated formation energy indicates that the F-or Cl-related oxygen vacancy defect is a deep hole trap, which can trap holes and prevent them from diffusing to the a-SiO2/Si interface. However, three N-related defects, namely N(2)o-H, N(2)o=O, and N(3)o-V o, tend to act as shallow hole traps to facilitate hole transportation during device operation. The N(2)o and N(3)o configurations can be negatively charged as deep electron traps during the oxide charge buildup after ionization radiation. In addition, the nudged elastic band (NEB) calculations show that four N-related defects, namely N(2)o, N(2)o-H, N(2)o=O, and N(3)o are capable of capturing protons and preventing them from diffusing to and de-passivating the interface. This research reveals the fundamental properties of the F-, Cl-, and N-related defects in amorphous silica and the details of the reactions of the carrier trapping and proton release. The findings help to understand the microscopic mechanisms that alleviate ionization damage of semiconducting devices by doping a-SiO2.
Keywords:  first-principles calculation      doping      defect      proton  
Received:  30 December 2020      Revised:  03 February 2021      Accepted manuscript online:  08 February 2021
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  61.72.Bb (Theories and models of crystal defects)  
  61.80.Az (Theory and models of radiation effects)  
Fund: Project supported by the Science Challenge Project (Grant No. TZ2016003-1-105), CAEP Microsystem and THz Science and Technology Foundation (Grant No. CAEPMT201501), the National Basic Research Program of China (Grant No. 2011CB606405), and Tianjin Natural Science Foundation, China (Grant No. 20JCZDJC00750).
Corresponding Authors:  Corresponding author. E-mail: xzuo@nankai.edu.cn   

Cite this article: 

Xin Gao(高鑫), Yunliang Yue(乐云亮), Yang Liu(刘杨), and Xu Zuo(左旭) First-principles calculations of F-, Cl-, and N-related defects of amorphous SiO 2 and their impacts on carrier trapping and proton release 2021 Chin. Phys. B 30 047104

1 Schwank J R, Shaneyfelt M R, Fleetwood D, et al. 2008 IEEE Trans Nucl Sci. 55 1833
2 Bongiorno A and Pasquarello A 2004 Phys. Rev. B 70 195312
3 Deal B E and Grove A S 1965 J. Appl. Phys. 36 3770
4 Ganster P, Tréglia G and Saùl A 2010 Phys. Rev. B. 81 045315
5 Huang S P, Zhang R Q, Li H S, et al. \hrefhttps://doi.org/10.1021/jp903932s 2009 J. Phys. Chem. C 113 12736
6 Tuttle B R, Hughart D R, Schrimpf R D, Fleetwood D M and Pantelides S T 2010 IEEE Trans. Nucl. Sci. 57 3046
7 Yue Y, Song Y and Zuo X 2018 Chin. Phys. B. 27 037102
8 Rowsey N L, Law M E, Schrimpf R D, et al 2011 IEEE Trans. Nucl. Sci. 58 2937
9 Yokozawa A and Miyamoto Y 1998 Appl. Phys. Lett. 73 1122
10 Tan S S, Chen T P, Soon J M, Loh K P, Ang C H, Teo W Y and Chan L 2003 Appl. Phys. Lett. 83 530
11 Schmidt P F, Rand M J, Mitchell J P and Ashner J D 1969 IEEE Trans. Nucl. Sci. 16 211
12 Jeong S and Oshiyama A 2001 Phys. Rev. Lett. 86 3574
13 Orellana W, da Silva A J R and Fazzio A 2004 Phys. Rev. B 70 125206
14 El-Sayed A M, Watkins M B, Afanas'ev V V, et al 2014 Phys. Rev. B 89 125201
15 Van de Walle and C G Neugebauer J 2004 J. Appl. Phys. 95 3851
16 Freysoldt C, Neugebauer J and Walle C G V D 2009 Phys. Rev. Lett. 102 016402
17 Tamura T, Lu G H, Yamamoto R, et al. \hrefhttps://doi.org/10.1103/PhysRevB.69.195204 2004 Phys. Rev. B 69 195204
18 Jeong S and Oshiyama A 2001 Physica B 308 999
19 Lee E C and Chang K J 2002 Phys. Rev. B 66 233205
20 Ono H, Ikarashi T, Miura Y, Hasegawa E, Ando K, Kitano T 1999 Appl. Phys. Lett. 74 203
21 Bhat M, Yoon G W, Kim J, Kwong D L, Arendt M and White J M 1994 Appl. Phys. Lett. 64 2116
22 Hegde R I, Tobin P J, Reid K G, Maiti B and Ajuria S A 1995 Appl. Phys. Lett. 66 2882
23 Carr E C and Buhrman R A 1993 Appl. Phys. Lett. 63 54
24 Tan S S, Chen T P, Soon J M, Loh K P, Ang C H, Teo W Y and Chan L 2003 Appl. Phys. Lett. 83 530
25 Godet J and Pasquarello A 2006 Phys. Rev. Lett. 97 155901
26 Rasnkeev S N, Fleetwood D M, SchrimpfF R D, et al.2004 IEEE Trans. Nucl. Sci. 51 3158
27 Chen X J, Barnaby H J, VermeireERME B, et al.2007 IEEE Trans. Nucl. Sci. 54 1913
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[6] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[7] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[8] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[9] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[10] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[11] A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2
Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2023, 32(2): 027201.
[12] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[13] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[14] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[15] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
No Suggested Reading articles found!